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ABSTRACT
On the one hand, we deal with (< k)-supported iterated forcing notions
which are (&g, &1)-complete, bearing in mind problems on Whitehead
groups, uniformizations and the general problem. We deal mainly with
the case of a successor of the singular cardinal. This continues [Sh 587].
On the other hand, we deal with complimentary ZFC combinatorial results.
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§1. GCH implies for successor of singular no stationary S has
uniformization

We show that a major improvement in [Sh 587] over [Sh 186] for inaccessible
(every ladder on S has uniformization rather than some ladder on S) cannot be
done for successor of singulars. This is continued in §4.

1.1 FAcT: Assume
(a) A is strong limit singular with 2* = A%, let cf(A\) = o
(b) S C {d < A" :cf(d) =0} is stationary.
Then we can find (< 7 : i < 0 >: § € S) such that
(@) 4¢ is increasing (with i) with limit &
(8) if p < X and f: At — u then the following set is stationary:
[5€8: 1018 = f(3iqn) for every i < o).
Moreover
(B)* if fi + At = pi,p < A for ¢ < o then the following set is stationary:
(5 € S fi(1) = Fi(1fiy) for every i < o},

Proof: This will prove 1.2, too. We first concentrate on (a) + {3) only.

Let A=), <o iy A; a cardinal increasing continuous with 7, Aj41 > 2% Ao >
29. For a < A, let a = ;. @a,i such that |as| < A Without loss of
generality 6 € S = § divisible by A¥ (ordinal exponentiation). For § € S let
(B8 : i < o) be increasing continuous with limit é, 8} divisible by A and > 0.

For 6 € S let (b} : i < o) be such that: b3 C B9, |bJ| < A;,b? is increasing
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continuous with ¢ and 6 = U, b (e.g., we can let b} = U, ;, ; ap 8 ga U A i)
We further demand A; C b2 N A. Let (f%: a < At) list the two-place functlons
with domain an ordinal < A* and range C A*. Let S = J, .\ Su, with each S,
stationary and (S, : p < A) pairwise disjoint. We now fix g < A and will choose
38 = (v :i < o) for § € S, such that clause (@) holds and clause (3) holds (that
is, for every f: AT — p for stationary many § € S, the conclusion of clause ()
holds); this clearly suffices.

Now for € 5, and ¢ < j < ¢ we can choose Cf‘j@ (for e < A;) (really here we
use just € = 0, 1) such that:

(A) (¢, e 1€ <A ) is a strictly increasing sequence of ordinals,
(B) 55 < (25] 2 < B2, (can even demand ng’e < B+ N,
(C) ;. {0 jicr i1 <Jre1 < Ay, (and iy < o, really only iy = i matters)},
(D) for every aj,an € b the sequence (Min{\;, fx (ag,C,J JY e <Ay s
constant, i.e., one of the following occurs:
(a) €< /\ = (a29<z_7 E) ¢ Dom( ():1)7
(B) e< A= f;1(027Cf,],g) = ;l(ag,Qs’j’O), well defined,
(v) e< A= f3, (ag,q{j’e) > Aj, well defined.
For each 7 < j < ¢ we use “A is strong limit > A; > 37, . Aj +07.

Let G = {g : g a function from ¢ to ¢ such that (Vi < 0)(i < g(i }. For
eaih funct(ison g € G we try 390 = <Cf,g(i),0vcf,y(i),1 Hi < o), Le., (G5, 2z+1> =
(Vi\g(i),01 Virg(iyo1)-

Now we agk for each g € G:

Question’: Does (39 : 4 € S,,) satisfy

(vfe? ) (35 € S,) /\ F680) = 72z+1))?

i<o

If for some g € G the answer is yes, we are done. Assume not; so for each g € G
we can find fg: AT — p and a club E, of At such that

5 €8,NEg= (3 < 0)(fo(v§°) # £(5551)),

which means

deS,NE;= (Ji< U)[fg((f,g(i),()) # fg(Cf,g(i),l)]'

Let G = {g: : ¢ < 27}, so we can find a 2-place function f* from A% to u
satisfying f*(e,a) = f,, (a) when & < 29, & < A*T. Hence for each o < At there

is v[a] < At such that f* [« ol
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Let E* =, .90 Eg, N {6 < AT : for every a < § we have y[a] < d}. Clearly it
is a club of A*, hence we can find § € S, N E*. Now 32, < & hence ¥[82,,] < ¢
(as 6 € E*), but 6 = |J,,, b hence for some j < 0,7[8¢,,] € b?; as b? increases
with j we can define a function h: 0 = ¢ by h(7) =Min{j:j > i+1and p < )
and v[B?,] € b‘g}. So h € G, hence for some g(*) < 27 we have h = g.(,). Now
looking at the choice of Cﬁh(i),O’ggh(i),l we know (remember 27 < Ag C b? and
< Angiy)

(Ve <27)(Va € bh(z))[Rang(fa) C p & Dom(f}) 2 By, — fale, Cgh(i),o)
= fa(e, f,h(i),l)]-

In particular this holds for ¢ = ¢(x),a = 'y[ﬂf +1], S0 we get
f;[BfH](E(*)wcg,h(i),O) = f;[gf“](e(*)’cgh(i),l)'
By the choice of f* and of y[8{,,] this means

fge( )(Cz h(i),0 ) fgs( )(Q h(i), 1))

but h = ge(s), and the above equality means f;, (v ?) = fouw (yaely %), and
this holds for every i < o, and § € E* = § € E, ,,, so we get a contradiction to
the choice of (fg,,,,, Ec(x))- So we have finished proving (o) + (8).

How do we get (8)* of 1.1, too? The first difference is in phrasing the question.
Now, for g € G; it is

Question4: Does (399 : 5 € S,,) satisfy:

((Vfo e po)(Vh € X ) (Vi €M ) - )
1,<0
(@245 € Su) (N £:008) = £i(45i30)-

<o

If for some g the answer is yes, we are done; so assume not. Therefore we have
foi € M (1) for g € G,i < o and club E, of A* such that

§ € SN Ey = (3i < 0)(fo.i(18%) # foi(h35)-

A second difference is the choice of f* as f*(oc +1i,a) = fg, i(a) for € < 27,
i<o,a< At
Lastly, the equations later change slightly. L]
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1.2 Fact (1) Under the assumptions (a)+(b) of 1.1, letting X = (\; : ¢ < o)
be increasingly continuous with limit A such that 27 < Xg,2% < A\;41 we have
(¥)1 + {*)2 where
()1 we can find (< 'yg :{ <A >:4 € 8) such that

(a) ¢ is increasing in ¢ with limit 4,

Byt if fir AT — Ay, for i < o, then the following set is stationary
{6 €S fi(v)) = fu(n}) when ¢,€ € [\, Miga) for every i < o}

(%)2 moreover, if Fy: [AT]<Y = A} for i < o (or just Fj: [AF]<Y = AP
and sup(w) < min(F;(w)) for w € [A*]<?*, for each i < o, then in addition
we can demand

(@) {7:Ce D dinl} SR ¢ <A,

(i) |{(7g (<Y 'yg* =~} < A for each v < A* and {* < 0.

(2) Assume A, (\; : i < o) are as in part (1) and (Cs : § € S) is given; it guesses
clubs (for A*, which means that for every club E of A* the set {§ € §: C5; C E}
is a stationary subset of A*) and Cs5 = {ald,i] : i < o},ald, 1] divisible by A*
increasing in ¢ with limit §; (cf(¢[d,i+ 1]) : i < o) is increasing with limit A and
let B(0,4) = 30, ; A x cf(afs, j]). Then

() we can find (< 'yg :{ < A>:6€8)such that

() ('y‘g : ¢ < A) is increasing with limit 6, (for § € S),

(8) sup{rZ: 7¢ < B[6, 5 + 1]} = aé, j],

{v) for every f; € (A+)(ui) for i < o where y; < A and club E of A\t
for stationarily many 6 € § we have {7/ : i < A} C E and f;(7Q) =
£:(78), when C,¢ € [B[6,i]+ M€, B8, ]+ Aié + As) and € < cf(afd, ])).

Proof: (1) The same proof as in 1.1 for (x);, but see a proof after the proof of

4.2.
(2) Should be clear, too. B2

§2. Case C: Forcing for successor of singulars

We continue [Sh 587].

2.1 Hypothesis: (1) A strong limit singular ¢ = cf(A) < A, K = AT, pu* > &,
28 = \F.

2.2 Definition: (1) Let €., (1*) be the family of £ C {a: a = (a; : i < o) where
a < K,a; € [p*]<* increasing continuous, and a; Nk € x} such that: for every
0 = cf(f) < A x large enough and = € H(x) we can find (N; : i < 8) obeying
@ € & (with error some n, see [Sh 587, B.5.1(1)]) and such that = € Np; this
repeats [Sh 587, B.5.1(2)]; formally we should say that N obeys a@ for p*.
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(2) €L (u*) is the family of £ C{a:a={a;:i<o0),a, increasing continuous,
i<o=la] <Aand A+1C ., ai}-

2.3 Definition: (1) We say M = (M; : i < o) is ruled by (£, &) if, for some
X > pt
(8) &o € Canlp®). €1 € CL(u®),
(b) for* some (M?: —1<i <o) and (N': -1 <1< o) we have:
(Ot) ]\i[i = (H(X)a €»<;)’A
(8) M obeys some @ € &; for some finite error (so for some n, for every
i,a; C M;Nu* C ai_‘_n) and M i (Z‘+-1) € M and j < i = Mj = Mj
and M; is increasing continuous,
() [Mi+1]2'|M”| C M4 for i a limit ordinal < o,
(6) M = (M} : o < &),N* = (N} : a < &) and M} < N <
(H(x), € <}) and A+ 1 C Ng and [[ME]| = [ME[MMN for o < &;
non-limit, [MAJIM:l C M}, for B < &y,
() (Ni : a < &) = Nt obeys some b; € & for some finite error and
M?, N* are increasing continuous,

(¢) Mip1 =M} C Ni and (M, N7):j <i) e Mg,

(7) 8; C My (hence §; < A) and A C NJ,

(6) cf(5 ) > 2080 for 4 limit,

() N' [ (@+1),M' [ (a+1) € Mi,, for a < 6;, i < o, hence Nj =

Sk(H(x),€,<;)(Mfa U A) when ¢ < ¢ and 8 < §; is a limit ordinal,
(k) N} < Nj fori < j,
(/\) M; < Mé,Mi < Mé
(2) We say above that (M : i < o), (N : i < 0)) is an (£o, £1)-approximation
to M.
(3) Let €®,.(11*) be the family of (£y,£;) such that:
(a) &0 € Cw(p*) and & € €L (1*),
(b} for x large enough and = € H(X) we can find M which is ruled by
((é(),gl) and x € My,
(c) & is closed (see below).
(4) & is closed if (a; i< )€ Eo,v < B < « implies {a; 1€ [8,7]) € Eo.

Remark: (1) In Definition 2.3(1), letting N = NO"N'..., ie, N =
(Nj:i < A),Ne=: NLife=3 ;85 +a; hence tg(N)=Xand N [ (ip + 1) €
N;,+1 so N is <-increasingly continuous, and ¥ < A = Nlvy€N .

* We may later ignore the i = —1 in our notation.
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2.4 CLaM: (1) Assume & € €oo(p*) and Q = (Po, Qs 1 i < ) is a (< k)
support iteration such that ltp, “Q; is strongly &o-complete” for each i < v; see
[Sh 587, B.5.3(3)]. Then P, is strongly €y-complete (hence P, /Pg).

(2) If Q is £y-complete, then V? = &, non-trivial.

Proof: By [Sh 587, B.5.6] (here the choice “for any regular cardinal § < k"
rather than “for any cardinal # < &” in [Sh 587, B.5.1(2)] is important). | W

2.5 Definition: Let (€y,&1) € ¢®,.(1*) and let Q be a forcing notion.

(1) For a sequence M = (M; : i < o) ruled by (&,&,) with an (&, &)-
approximation ((M?: i < o),(N?:i < ¢)) and a condition r € Q we define a
game 6?71,(1\71i:i<0),(1vi:i<a) (Q,7) between two players COM and INC.

The play lasts ¢ moves during which the players construct a sequence
(G0, p, (Pi» @ : %0 — 1 < @ < o)) such that iy < o is non-limit, p € M;, N Q,
Pi € Mig1NQ, G = (gic € < 8;) CQ (where §; + 1 = lg(N?)).

The player INC first decides what is ¢y < § and then it chooses a condition
p € QN M, stronger than r. Next, at the stage ¢ € [ig — 1,8) of the game, COM
chooses p; € Q M M; 41 such that:

(1) p <q pi»

() (%) < 0)(¥e < 5)(gj-<qi). A

(iil) if 7 is a non-limit ordinal, then p; € Q is minimal satisfying (i)+(ii),
(iv) if ¢ is a limit ordinal, then p; € Q.

Now the player INC answers, choosing an increasing sequence ¢ =
(@ie : € < &;) such that p; <g gio and § is (N? | [, &;], Q)*-generic for some
« < §; (see [Sh 587, B.5.3.1]) and 8 < &, = §; | (B+ 1) € M; g+1. The player
COM wins if it has always legal moves and the sequence (p; : i < o) has an upper
bound in Q.

(2) We say that the forcing notion Q is complete for (c‘fo, é 1) or (fg, 5'1)-complete
if

(a) Q is strongly complete for & and

(b) for a large enough regular x, for some = € H(x), for every sequence M

ruled by (£, &) with an &y-approximation ((M*:i < o), (N? 1§ < a)) and
such that x € My and for any condition r € Q N My, the player INC does

not have a winning strategy in the game ®E'(Mi:i<a)'<ﬁz:i<o>(Qv ).

2.6 PROPOSITION: Assume

(a) (éo,él) € an(ﬁ*)’

(b) Q is a forcing notion for (50,5'1).
Then Ikg “(£o.€1) € €&, ().
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Proof:  Straightforward (and not used in this paper).

2.7 PROPOSITION: Assume that & € € .(u*) is closed and Q =
(Pa, Qa : a < %) is a (< k)-support iteration of forcing notions which are strongly
complete for £&. Let T = (T, <*,rk) be a standard (w, ag)”-tree (see [Sh 587,
A.3.3)), IT|l < A,w C 7,0a0 an ordinal, and let p = (p, : t € T) € FTr'(Q); see
[Sh 587, A.3.2]. Suppose that T is an open dense subset of P.,. Then there is
d={g :t€T) € FTr'(Q) such that p < q and, for each t € T,
(a) g € {q| rk(t):q €T}, and
(b) for each a € Dom(g;), one of the following occurs:
(1) @) =pla), )
(ii) IFp, “gi(cr) € Qo (not just in the completion Qy ),
(iii) IFp, “there isr € Q, such that Qa E pi(a) <7 < @) (not really
needed).

Proof: Just like the proof of [Sh 587, B.7.1].

Our next proposition corresponds to [Sh 587, B.7.2], which corresponds to
[Sh 587, A.3.6]. The difference with [Sh 587, B.7.2] is the appearance of the
M, M.

2.8 PROPOSITION: Assume that £ € €, (u*) is closed and Q = (Pa, Qo : x < 7)
is a (< k)-support iteration and x = (T4 : o < 7) Is such that

IFp,, “Qq is strongly complete for & with witness zo”

(for o < 7y). Further suppose that

(o) (N,a) is an £-complementary pair (see [Sh 587, B.5.1]), N = (N; : i < )
and x,g,@ € Ny,

(8) T = (T,<*,rk) € Ny is a standard (w,aq)?-tree, w C v N Ny, |lw]| <
cf(8), ap is an ordinal, &y = a9+ 1 and 0 € w,

(M) p=(p:teT)e FTr'(Q) N Ny, w € Ny, (of course ag € Ng, on FTr' see
[Sh 587, A.3.2)]),

(6) M = (M; : i < 8),M; < (H(x),€,<}),M; is increasing continuous,
[M;)1@0+T1 C M;,; and the pair (M | (i 4+ 1),N | (i + 1)) belongs to
My, M; < N; and wU {ZL‘,S(),Q} € My,

(¢) for i < 6, T; = (T, <i,rk;) is such that T; consists of all sequences t =
(t¢ : ¢ € dom(t)) such that dom(t) is an initial segment of w, and

(i) each t; is a sequence of length o,
(i) (t¢ lap: ¢ €dom(t)) €T,
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(iii) for each ¢ € dom(t), either t¢(ap) = * or tc{ag) € M; is a Pc-name
for an element of Q¢ and
iftc(a) # * for some o < g, then t(ag) # *,
(iv) rk;(t) = min(w U {¢}\ dom(t)) and <; is the extension relation.
Then
(a) each T; is a standard (w, a1)"-tree, | T < ||T||- || M;||l“N, and ifi < & then
T; € Niya,
(b) T is the projection of each T; onto (w, o) and T; is increasing with 1,
(¢) thereis § = (g; : t € T5) € FTr'(Q) such that
(i) p Sproj?s q,
(if) ift € Ts\{<>} then the condition g, € P}, ,, is an upper bound of
an (N | [ig, 6], Py (r))*-generic sequence (where ig < 0 is such that
t € T,,) and for every 8 € dom(q;) = Njs N rk(t),q:(5) is a name
for the least upper bound in Qg of an (N[Gg] | [£,6),Qs)*-generic
sequence (for some & < §), ) ) )
[Note that by [Sh 587, B.5.5], the first part of the demand on ¢
implies that, ifig < €, then g, | 3 forces that (N[Gg] I [€,6],a | [¢,4))
is an S-complementary pair.] i
(iti) if t € Tj,t' = proj¥ (t) € T, ¢ € dom(t) and t¢(ap) # *, then
gt 1 ¢ e “per(€) <g tc(ao) = te(an) <g, ¢:(¢)”,
(iv) g<> =pe>-

Proof: Clauses (a) and (b) should be clear. Clause (c) is proved as in [Sh 587,
B.7.2]. ks

Remark: In 2.9 below it is proved as in the inaccessible case, i.e., the proofs
of ([Sh 587, B.7.3]) with M,(N' : i < o) as in Definition 2.5. We define the
trees point: in stage ¢ using trees 7; with set of levels w; = M; N~ and looking
at all possible moves of COM, i.e., p; € M;4, NP, so constructing this tree of
conditions in d; stages, in stage ¢ < §;, has [N N Mi+1|2"Mi " nodes.
Now

p € P, N M1 # Dom(p) C M4y
but

p € P, N M4, = Dom(p) C M, =

p € P, N N! = Dom(p) C N:.
So in limit cases i < o: the existence of limit is by the clause (u) of Definition
2.3. In the end we use the winning of the play and then need to find a branch in
the tree of conditions of level o: like Case A using &.

N,

i<wo
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2.9 THEOREM: Suppose that (£y,&1) € €2, (u*) (so & € €c(p*)) and Q =
(Pa, Qo : @ < 7) is a (< k)-support iteration such that for each o <

Ik, “Qo is complete for ((‘fg,él)”.

Then
(a) Ikp, (€o0,61) € QQK(,UL*);Amoreover
(b) P, is complete for (&, &,).

Proof: We need only part (a) of the conclusion, so we concentrate on it. Let x
be a regular large enough regular cardinal, £ be a name for an element of H(x)
and p € P,. Let 2o € H(x) be a Py-name for the witness that Q, is (forced to
be) complete for (£o,&;) and let T = (o @ o < 7). Since (€0, £1) € €8, (1*),
we find M = (M; : i < o) which is ruled by (£,£,) with an &y-approximation
(Mi N : =1 < i < o) and such that p,Q,z,%,&, € My (see 2.3). Let
Nt =(Ni:e<é;) and let at € & be such that (N?,a) is an £y-complementary
pair and let M* = (M} : ¢ < ;). Let w; = {0} UU, <, (v N My ) (for i < 8). By
the demands of 2.3 we know that |Jw;|| < cf(6;), w; € M¢.

By induction on ¢ < ¢ we define standard {w;,i)"-trees T; € M;; and P =
(pi :t € T;) € FTr'(Q) N Mi4y such that ||T;| < || M;||lws! < || M4 || if @ is limit
or 0,w;+1 = w; hence i1 = T;, and if j <4 < 0 then T; = projg;’,;':ll))(ﬁ) and
g Spmj% P
CASE 1: : =0.

Let T consist of all sequences (t¢ : ¢ € dom(t)) such that dom(t) is an initial
segment of wg and t¢ =<> for ¢ € dom(t). Thus T is a standard (wo,0)-
tree, |Tg|| = llwoll + 1. For t € T let p;° = p I rkg(t). Clearly the sequence
P = (pr°:t € Tg) is in FTr'(Q) N Ny '. Apply 2.8 to £0,Q, N1, T, wo and
7*0 (note that ||M7!|Iwell C M for ¢ < §p). As a result we get a (wp,1)7-
tree 75 (the one called Tj, there) and p° = (pY : t € Tp) € FTr'(Q) N My
(the one called g there) satisfying clauses (¢),(c)(i)—(iv) of 2.8 and such that
I Toll < || NG H|[Iwelt = || Mo||lwell = ||Mp|| (remember cf(do) > 21Mell). So, in
particular, if ¢ € Tp, ¢ € dom(t) then t.(0) € M, is either * of a P;-name for an
element of Q.

Moreover: we additionally require that (7o,p%) is the <} -first with all these
properties, so 7o, 7° € M.

CASE 2: i =149+ 1.

We proceed similarly to the previous case. Suppose we have defined 7;, and pio
such that T, 5% € M 11, |Ti |l < l|Mig41]|- Let T;* be a standard (w;, ig)7-tree
such that
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T} consists of all sequences (f; : ( € dom(t)) such that dom(¢) is an initial
segment of w; and
(tc : ¢ € dom(t) Nws,) € T and (V¢ € dom(t)\wi, ) (V) < i0)(te(F) = *).
Thus, 7;, = prO_]EZ“Z)m)(T*) and |T¥|| < || Mi]l. Let pi® = pio | tki(t) for
teTrt' = pl‘OJTi (t). Now apply 2.8 to £y, Q, N, T*,w; and p** (check that
the assumptions are satisfied). So we get a standard (w;,io + 1)7-tree 7; and
a sequence P satisfying (¢), (c)(i)—(iv) of 2.8, and we take the <}-pair (T;,7")
with these properties. In particular, we will have ||T;|| < || M;,|| - |[N§?||”Mi0” =
IMig1all and 7, i € M;y,.
CASE 3: i is a limit ordinal.
Suppose we have defined 7;,7° for j < i and we know that ((7;,7°) : j < 1)

€ M4y (this is the consequence of taking “the <}-first such that ...”). Let
T = im((7; : j < 1)). Now, for t € T* we would like to define p}* as the limit

of p/ 7 However, our problem is that we do not know if the limit exists.
proj s (t )

Therefore we restrict ourselves to these ¢ for which the respective sequence has

an upper bound. To be more precise, for t € T;* we apply the following procedure.

Q@ Let t/ = proj%* (t) for j < i. Try to define inductively a condition p}* €

Pr):(r) such that dom(p}?) = U{dom(p{j) N rkf(t)‘ : j < i}. Suppose we

have successfully defined p;* | a for @ € dom(p;*), in such a way that
piila>pl [ forall j <i. We know that

P [ alkp, “ the sequence (pgj (a):j <i)is <g, -increasing”.
So now, if there is a Po-name 7 for an element of Q, such that
pi T alke, “(Vi < i)(p) () <g, 7)",

then we take the P,-name of the lub of (pZJ (@):j< i,pzj (@) # ) in Q,

and we continue. If there is no such 7, then we decide that ¢ ¢ 7, and we

stop the procedure.*
Now, let 7;" consist of those ¢ € T;* for which the above procedure resulted in a
successful definition of p}® € Prks(t)- It might not be clear at the moment if Tz.+
contains anything more than <>, but we will see that this is the case. Note that

ITH < ITI < TS0 < TT M1 < 200 < g
j<i j<i

* Generally in such situation we can act as in 2.7 to get a real decision, i.e., if
I (@ + 1) is not well defined while p;* | o is well defined then pi* | o I

“the sequence (p“( a) : j < t) has no <g,-upper bound”. But the need has not
arisen here. )
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Moreover, for nonlimit & > 2 we have || MZ|[IllHITT N < | A7Z||1M:ll € i, | and
T, p* € M. Let T; = T;*,p* = p** (this time there is no need to take the
<}-first pair as the process leaves no freedom). So we have finished case 3.

After the construction is carried out we continue in a similar manner as in
[Sh 587, A.3.7] (but note a slightly different meaning of the ’s here).

So we let T, = lim({7; : ¢ < 0)). It is a standard (o, o)7-tree. By induction on
a € we U {7} we choose ¢, € P, and a Py-name t, such that:

(a) Ibp, “ta € To& rks(te) = @” and let if = min{i < 6 :a € M;} < o,

(b) I, “ts =t | B° for 8 < a,

(c) dom(ga) = wsNay,

(@) 3 5 < o then gy =g I

) P

)

.7 . is well defined and pt [ @ < g, for each i < o,

€ T
( pro Tilta ) prOJT‘: (ta)

(f) for each S < a

4o IFp, “(Vi < 5)((%1) (i) = * © i < i2) and the sequence

(o,p (8), ((tp+1)5(0), P’ (B) : g <i<8))

T
PTOJT (tg+1) proj;? (ta+1)
1
0

is a result of a play of the game QﬁM[Gﬂ] (Ni[Gplii<d) (Qﬁ,OQﬂ)

won by player COM”,

(g) the condition g, forces (in P,) that
“the sequence M [Gp.] T [ias ] is ruled by (&,&;) and
(NYGp,] : i3 < i< o) isits Eo-approximation”.
(Remember: £ is closed under end segments.) This is done completely in parallel
to the last part of the proof of [Sh 587, A.3.7].
Finally, look at the condition ¢, and the clause (g) above. g

2.10 Generalization (1) & is a set of triples (@, (b",a* : i < o), \,@ =
(a; 1 i < o), @ = (a : a < &), b= (b :a < é) € o, af;i = Giy1,
a; Cbi, A = (\; i < o) an increasing sequence of cardinals < A, " A = A

(2) We say (M, (M?:i< a),(N:i<a))obeys (@ (b :i <) if: M;np*=
a;, N' obeys b’ all things in 2.3 but A; > ||Mil, \s > TT;<; M5l [ME € My,
for o < &; (so earlier \; = 21M:ll).

2.11 Conclusion (1) Assume
(a) S C {6 < k:cf(6) =0} is stationary not reflecting,
(b) a=(as:0 €S),as=(as; :i <0),0 =as, and as; increasing with 7 and
i <0 = |as;| < A and sup(as;) < &
[variant: X% = (A : i < &) increasing with limit A],



Vol. 134, 2003 SUCCESSOR OF SINGULARS 139

(c) welet u* = k,& = &S] ={a:a=(a;:i< a),a <K,a; € K\S increasing
continuous},
() & ={as:6€S}
(or {{as, (@, b : i < a), %) : § € S} appropriate for (2.10)),
(e) we assume the pair (&9, &) € €2, (%),
) p=p k<= cf(r) < p.
Then for some (fo, :‘:’1)—complete forcing notion P of cardinality u we have

IFp “forcing axiom for (f:'o, f:'l)-complete forcing notion

of cardinality < s and < 7 of open dense sets”

and in VT the set S is still stationary (by preservation of (£, £;)-nontrivial).
(2) If clauses (a),(c) holds and s, then for some &, if we define £; as in clause
(d) then clauses (b),(d),(e) hold.

Proof: (1) See more at the end of §3.
(2) Easy. k1

2.12 Application: In VT of 2.11:
(a) if
(1) 6 <X As C6=1sup(As) ford eSS,
(i) |As| <9,
(i) h = (hs:0 € S),hs: A — 8,
(iv) A5 C U{a(;,iH\a(;,,- 1 < 0‘},
then for some h: £ — 8 and club E of k we have (V6 € SN E)[hs C* h)
where h' C* h"” means that sup(Dom(k’)) > sup{a : @ € Dom(h') and
a ¢ Dom(h") or
o € Dom(h") & W' (@) # b ()},
(b) if we add: “hs constant”, then we can omit the assumption (iii),
(c) we can weaken |As] < 0 to |As Nas,i+1] < las.l,
(d) in (c) we can weaken |As] < 0V [As Nasi+1]| < las;| to hs [ asit1 belongs
to M;41 NN for some a < §;
(remember cf(sup as;+1) > AY).

2.13 Remark: (1) Compared to [Sh 186] the new point in the application is (b).

(2) You may complain why not having the best of (a)+(b), i.e., combine their
good points. The reason is that this is impossible by §1, §4; the situation is
different in the inaccessible case.

Proof:  Should be clear. Still, we say something in case hs constant, that is (b).
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Let
Q = {(h,C) :h is a function with domain an ordinal

a< k=t

C aclosed subset of a + 1,a € C

and (V6 e CNSN(a+1))(hs C* h)}
with the partial order being inclusion.

For p € Q let p = (hP, CP).

So clearly if (h,C) € Q and @ = Dom(h) < B € & then for some h; we
have h C hy € @y, Dom(hy) = f3; moreover, if vy < 8 & 8 ¢ S then (h,C) <
(AU, CU{B}) €Q. o

The main point is proving Q is complete for (£o,&1). Now “Q is strongly
complete for £&” is proved as in [Sh 587, B.6.5.1, B.6.5.2] (or 3.14 below which
is somewhat less similar). The main point is clause (b) of 2.5(2); that is, let
M,(M?:i < wo),(N':i < wa) be as there. In the game &y (. .icwo) (T, Q)
from 2.5(1), we can even prove that the player COM has a winning strategy: in
stage ¢ (non-trivial): if hs is constantly v < 6 or just hs [ (As N asi41\as,) is
constantly v < # then we let

pi = (U {hqé 17 <iand ¢ <6} U’Y[N;_nn,ﬁi)’
closure(U{C'% : j < i and ¢ < §;} U {ﬂi}))

for some 8; € M;1Nk\M; large enough such that AsNM; 1Nk C G;. | P RT)

Remark: In the example of uniformizing (see [Sh 587]), if we use this forcing,
the density is less problematic.

2.14 CrAam: (1) In 2.12’s conclusion we can omit the club E, that is, let E = &
and demand (Y6 € S)(hs C* h) provided that we add in 2.12, recalling S C k
does not reflect is a set of limit ordinals and

A= <A5 10 € S),A5 cd =sup(A5)

satisfies
(*) 81 # 02 in S = sup(As, N As,) < d1 N e
(2) If (V6 € S) otp(As) = 6 this always holds.

Proof: We define Q = {h : Dom(h) is an ordinal < & and h(B) # 0A S €
Dom(k) — (36 € S)[hs(B) = h(B)] and é € (Dom(h) + 1) N S implies ks C* h}
ordered by C. Now we should prove the parallel of the fact:
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X if p e Q a = Dom(p) < 3 < k then there is g such that p < ¢ € Q and
Dom(g) = 3.
Why does this hold? We can find (A5 : § € SN (8 + 1)) such that A C
Ags,sup(As\A%) < § and A’ = (A5 :0 € SN(B+1)) is pairwise disjoint.
Now choose ¢ as follows:

Dom(g) = 3,
p(j) Hj<e
q(j) =14 hs(j) fjeAj\aandde SN(B+1)\(a+1),
0 if otherwise.

Why does A’ exist? Prove by induction on 3 that for any Al, (A} : 6 € SN(a+1))
as above and 3 satisfying o < 3 < &, we can extend A to (45:6€ SN(B+1))
which is as above. B.14

2.15 Remark: Note: concerning & inaccessible we could imitate what is here:
having Mi+1;N§i,Ui<5 M; = ;5 Ni.

As long as we are looking for a proof that no sequences of length < « are
added, the gain is meagre (restricting the ¢’s by ¢ [ o € N, ). Still, if you want
to make the uniformization and some diamond we may consider this.

2.16 Comment: We can weaken further the demand, by letting COM have more

influence. E.g., we have (in 2.3) §; = A; = cf(X\;) = | Mi41ll, D; a |a;]T-complete

filter on );, the choice of ¢* in the result of a game in which INC should have

chosen a set of players € D; and {p, holds (as in the treatment of case E* here).
The changes are obvious, but I do not see an application at the moment.

§3. kt-c.c. and xt-pic

We intend to generalize pic of [Sh f, Ch.VIII, §1]. The intended use is for iteration
with each forcing > k — see use in [Sh {]. In [Sh 587, B.7.4] we assume each Q;
of cardinality < k. Usually u = x*.

Note: ffo is as in the accessible case, in [Sh 587], but this part works in the
other cases. In particular, in Cases A, B (in [Sh 587]’s context) if the length of
@ € & is < A (remember x = AY), then we have (< A)-completeness implies
Eo-completeness AND in 3.7 even @ € & = fg(@) = w is O.K.

In Case A on the Sy C S¥ if fg(a) = A,ax € Sp is O.K., too. STILL one can
start with other variants of completeness which is preserved.

3.1 Context: We continue [Sh 587, B.5.1-B.5.7(1)] (except the remark [Sh 587,
B.5.2(3)]) under the weaker assumption £ = k<% > Rg, so & is not necessarily
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strongly inaccessible; also in our £’s we allow @ such that |as| = |d] is strongly
inaccessible.

3.2 Definition: Assume:
K(a) p=cf(p) > ja|<* for a < p,

(b) the triple (x,pu*, &) satisfies: & = cf(k) > Ro,p* > K,& C {@ : a an
increasing continuous sequence of mermbers of [p*]<* of limit length < &
with a; N & € &}, and

(c) SY C {6 < p:cf(8) > Kk} stationary.

For ¢ = 1,2 we say Q satisfies (g, SD,EO)—png if, for some = € H(x) (can be
omitted, essentially, i.e., replaced by Q), we have

(%) if

() S C SU is stationary and (u, S, f:'o,:v) € N§,
(B) for a € 8,6, < K, and
(i) if £=1,N* = (N? :i < §,) and ¢, = §, and N** = N,
(ii) if ¢ = 2 then N®* = (N& : i < 6,),N® = (N® : i € ¢)
where ¢, C 84 = sup(cy), ¢l = ca U{8a}, cq is closed, vy < 8 € ¢o =
ca Ny € N§,
(7) (N%,a%) is Ey-complementary (see [Sh 587, B.5.3]); so N obeys a* €
& (with some error ny) (30 here we have ||N Sl < K00 < 8),
(6) p* is (N, Q)!-generic (see [Sh 587, Definition B.5.3.1]),
() a € N§ and
(i) if £ = 1, then for some club C of p for every a € S we have
((N8,p5%): B € SNC Na) belongs to N&,
(ii) if £ = 2, then for some club C of u for every & € SN C and
i < 0, we have (NB* [ (i+1),p° [ (i+1)) : B € SN C) belongs to
NEs,
(¢) we define a function g with domain S as follows: g(a) = (go(a), g1(c))
where

goe) = Ng. n (| N(sﬁﬂ) and g1(a) = (N5, , N7, €)ics, cego()/ =
B<a

then we can find a club C of p such that:
ifa<B&gla)=g(B)&aecCnS &P eCnS then d, =d3,g9(a) = g(B),
for some h, Ng iN ?ﬂ (really unique), and for each i < 4, the function h
maps N to Niﬁ,pzq to pf and {p? : i < 6o} U {pf 4 < 3} has an upper
bound.
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3.3 Cramm: Assume K, ie., (a), (b), (c) of 3.2 and
(d) &, is non-trivial, which means:
for every y large enough and x € H(x) there is N = (N; : i < §) increasingly
continuous, N; < (H(x),€),z € Ni,||Ni)l| < k&, N[ (i +1) € Ny and N
obeys some @ € & with some finite error n,
() Q is a strongly cf(&y)-complete forcing notion (hence adding no new boun-
ded subsets of k) where cf(£y) =: {a | [o, f] : @ € & and o < B < €g(a)},
(f) Q satisfies (1, SP, €o)-pic, where £ € {1,2}.
Then Q satisfies the pi-c.c. provided that
(*Y4=1orf=2and o is fat; see below.

3.4 Definition: We say & € €. (p*) is fat, if in the following game O, ,,» (£o)
between fat and lean, the fat player has a winning strategy.
A play last, x moves; in the a-th move:
Case 1: o nonlimit.
The player lean chooses a club Y, C [p*]<*, the fat player chooses a, € Y,
and P, C {¢: ¢ C a is closed} of cardinality < k.
Case 2: « limit.
We let Y, = [po]<* and a, = U{ag : B < a} and the player fat chooses
P, C{C:C C « is closed} of cardinality < k.
In a play, fat wins iff for some limit ordinal & and ¢ € P, we have:
(¥)(i) Bec=>cnpe Py,
(i) o = sup(c),
(iit) {(ap: B €cufa}) by

3.5 Remark: (0) With more care in the game (Definition 3.4) we incorporate
choosing the p* — 5. In 3.2(x)(e)(ii) we can add (NiB+1 : B € anNe) belong to
Ne .
(1) In Definition 3.4, without loss of generality ¢ € Po&3 € c= c¢cN B € Ps.
(2) If & is strongly inaccessible, without loss of generality we have P, = P(a),
so fat has a winning strategy.
(3) In general being fat is a weak demand, e.g., if & D {@a:a=(a;:1<w),
aw = U, an,a; € [*]<" is increasing.

Proof of 3.3: Case 1: £ =1.

Assume p,, € Q for @ < g and let x be large enough and z as in Definition 3.2.
We choose (N, p%) by induction on o < g as follows. If (N?,5%) : B < a)
is already defined, as & is non-trivial there is a pair (N®,a?) which is &o-
complementary and ((N?,5%) : 8 < a),Q, (ps : B < ), Pa,®,x belong to N§
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and let N® = (NP 14 < 4;). So po € N§ and we can choose p,; € Nf | such
that po = P and (pa i : § < da) is (N*, Q)!-generic.

[Why? By the proof of [Sh 587, B.5.6.4].] Now by “Q is (u, S, &y)-pice”, for
some o < B in SU, {p% : i < J,}U {pf 14 < dg} has a common upper bound
hence, in particular, p,,ps are compatible.

Case 2: £ =2.

Assume p, € Q for @ < p and let x be large enough. Let St be a winning
strategy for the player fat in the game Oy (30). Now we choose by induction
on i < k, the tuple (N2, P2, Y;®, ) where pf = (pf, : ¢ € Pf) for a < p such
that:

R(a) M7 < (H(x), € <),

(b) M increasing continuous in i,

(¢) IMP] < kand (Mf:j <) € M2, and M Nk € K, and po € M7,

(d) (Y7, Mg np* Pt j < 1) is an initial segment of a play of Oy, - (&) in

which the player fat uses his winning strategy St,

(e) ((M]’-B,Pf,}’;ﬂ,;ﬁf) :§ <14, € S) belongs to N2, | (hence Pj* C M7, 4, etc.),

(f) pf. € QN N7,

(g) if c € P{* and (p.n; : J € c) has an upper bound then pf, is such a bound,

(h) pf. € N{Z:T € M} is a dense open subset of Q}.

Can we carry the induction?

For i limit let M = U{M : j < i} and choose Y;*,P¢ by clause (d), i.e., by
the rules of the game Dy - (o) and p¢ by clause (g)+(h) (possible as forcing by
Q adds no new sequences of length < x of members of V). For ¢ non-limit, let
vy = (M, PPYL.p0) j<i,BeS) let V*={a:ae[u]<" and o € a and
a=p*N Skfﬁ(x),e,<;)({xi x Q,St,a})} (Sk<* means a € Y* = aNk € k) and
let (a$, P) be the move which the strategy St dictates to the player fat if the
i-th move of lean is ¥;* (and the play so far is (Y, M7 Np*, Po,j) : j < 1)). Now
we choose M = Skfﬁ(x),e,q)({x,;,@ St,a}) and P? has already been chosen
and p§ = (pf', : ¢ € P¢) as in the limit case.

Having carried out the induction, for each a« € S in the play
(Y, M§ N p*,P?): i < k) the player fat wins the game having used the
strategy St, hence there are a limit ordinal i, < x and closed ¢, € P;, such
that iq = sup(cq) and (M7 : j € ¢, U {ia}) obeys some member G, of .
As Q is cf(&)-complete we can prove by induction on j € co U {is} that
£<j&ec€Ca=>QFPcine < Plcan;:

Let 8n = ig, N = M@ for i < d, and §* = (pf : i € cq). Now continue as in
Case 1. i3
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3.6 CraiM: If (%) of Definition 3.2, we can allow Dom(g) to be a subset of
SNC, (A; : i < p) be an increasingly continuous sequence of sets, [A;| < p, N§* C
Aq 1 replacing the definition of g, go and by go(a) = N§ N A, and g1 by g1(a) =
(N§ ,Nf,C)ics, cego(c)/ = (and get an equivalent definition).

Remark: If Dom(g) N SY is not stationary, the definition says nothing.
Proof: Straightforward.

3.7 CLAM: Assume clauses K, i.e., (a), (b), (c) of 3.2 and (d) of 3.3.

For (< k)-support iteration Q = (P;,Q; : i < a), if we have IFp, “Q; is
(11, 8B, €o)-pic,” for each i < o and forcing with Lim(Q) add no bounded subsets
of k, then P, and P, /Pg, for p < v < €g(Q), are Ey-complete (1, S5, g‘g)—picg.

3.8 Remark: We can omit the assumption “Lim(Q) add no bounded subsets
of K if we add the assumption cf(&y) € €.,(p*), see [Sh 587, Def. B.5.1(2)],
because with the latter assumption the former follows by [Sh 587, B.5.6].

Proof:  Similar to [Sh f, Ch. VIII]. We first concentrate on
Case 1: £=1.

It is enough to prove for P,,.

We prove this by induction on a. Let Ibp, “Q; is (1, S 0, &o)-pice as witnessed by
r; and let x; = Min{x : ; € H(x)}".

Let z = (p*, &, 11, S, &o, ((xirzi) 1 i < £9(Q))) and assume y is large enough
such that x € H(x) and let ((N®,5*) : a € S) be as in Definition 3.2, so S C SU
is stationary and N® = (N : i < 8,). We define a g by

X, g is a function with domain S,

Ko g(a) = (ge(e@) : € < 2) where

go(@) = (N£) N (Upea N5,
g1{a) = the isomorphic type of (N§ , N, pf, €)cego(a)-
Let C be a club of p such that o € SNC = ((N?,p°) : B < a) € N§ (recall
=1).

Fix y such that S, = {a € S: g(a) = y and a € C} is stationary.

Let wo = U5, Dom(pf), w; = wa N go(a) for a € Sy (as a € Sy, clearly the
set does not depend on the a) For each ¢ € w; we define a P¢-name, 5%4, as
follows:

Sy,( = {a € Sy : (VZ < 5a)(p? [¢ € GNPC)}'

Now we try to apply Definition 3.2 in VT¢ to

((NPIGR < 6a), (7 (Q)IGr,] 1 < 8a)) o € 5[] ).
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Clearly, if 9, ¢[Gp,] is a stationary subset of y, we can apply it and g, ¢ is the P¢-
name of a function with domain Sy, ¢ defined like g in (x) of Definition 3.2. Now
gy, is well defined, and actually can be computed if we use Ag = U{Ng: [Gp ] :
a < f}. So by an induction hypothesis on « there is a suitable Pc-name C; of a
club of p st in addition, if S, ([Gp,] is not a stationary subset of , let c;[Gp, ] be
a club of y disjoint to it. But as P; satisfies the p-c.c., without loss of generality
Ce=Ccs0C' = Cﬂﬂceu; C¢ is a club of p. Now choose a; < o from S, NC’
and we choose by induction on ¢ € w’ = w; U{0,£9(Q)} a condition ¢. € P such
that:
®s(i) 61 <e= qe, = g [ &1,

(i) g is a bound to {pd* [€:4 < 0o, JU{PI? €11 < dgy }-
For ¢ = 0 let go = §. We have nothing to do really if ¢ is with no immediate
predecessor in w; we let g. be U{qe, 161 <¢e,61 €w'}. Solete =¢;+ 1,2, € w';
now if ¢. € G C P, , G generic over V, then a1, az € Sy ¢, [G], hence S, [G]NC.,
is non-empty, hence is stationary, and we use Definition 3.2.
Case 2: p=2.

Similar proof. k.7

3.9 CrAamM: Assume p = cf(p) > &, (Va < p)(|a|<* < p),
SC{éd<p:cf(d) >k}

is stationary. If |Q| < k or just < p, £y € €, (u*), that is C {a : a increasingly
continuous of length < k,a; € [p*|<* and a; N k € K} non-trivial, possibly just
for one cofinality, say Rq, then Q satisfies £ -pic,.

Proof: Trivial, we get same sequence of condition or just see the proof of
[Sh 587, B.7.4]. | ER)

3.10 Discussion: (1) What is the use of pic?

In the forcing axioms instead of “|Q] < &7 we can write “Q satisfies the
(1, SO, c‘:’o)—pic”. This strengthens the axioms.

In [Sh f], in some cases the length of the forcing is bounded (there wa) but here
there is no need (as in [Sh f, Ch. VII, §1]).

This section applies to all cases in [Sh 587] and its branches.

(2) Note that we can demand that the p satisfies some additional requirements
(in Definition 3.2), say pg; = Fo(N [ (2i +1),5* [ (2i + 1)).

Let us see how this improves somewhat the results of [Sh 587, B.8] on €%, (1*),
see [Sh 587, B.5.7.3].
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3.11 Definition: Assume
® Kk > Ry is strongly inaccessible and (o, £;) € €2, (u*) and 6y, 61 are regular
cardinals > k.6 a cardinal > « (let § = (6p,01,602), the usual case is
8o = k) and € C & is nontrivial (see Definition 3.3, clause (d)) and
¢ e {1,2}.
Let Axg o, (fo, &1, £), the forcing axiom for (é'o, &1, £), and 8 = (6, 6,,65) be the
following statement:
X if
(i) Q is a forcing notion of cardinality < 6,
(ii) Q is complete for (€0, &1), see Definition [Sh 587, B.5.9(3)],
(iii) Q satisfies (GO,SD,EA)-pic;g,
(iv) Z; is a dense subset of Q for i < ¢* < 65,
then there is a directed H C Q such that (Vi < i*)(H NZ; # 0).

3.12 THEOREM: Assume ® of Definition 3.11 and p = p<% = <% > gy + 6,.
Then there is a forcing notion P such that:
(a) P is complete for &,
(B) P has cardinality p,
() P satisfies the Gy-c.c. and even the (k, 6y, EA)-picg,
(6) P is complete for (50,51), hence IFp “(éo, 5’1) € ng,i(u*)” and more,
(€) IFp “Axft (50,51,8)

Proof: Like the proof of [Sh 587, B.8.2], using 3.7 instead of [Sh 587, B.7.4].
B3.12

We may wonder how large can a stationary S C & be?

3.13 CramM: (1) Assume
®(a) k is strongly inaccessible > Ny,
(b) S C & is stationary,
(c) for letting p* = k and & = &[S] = {a € €. (u*): for every i < lg(a) we
have a; ¢ S} we have & € €. .(u*),
() we let & = &[S] = {a € €(u*): for every nonlimit i < £g(@) we have
Then
(a) (£o,&1) € €®,(u*), see [Sh 587, B.5.7(3)].
(2) The parallel of 2.11.

We now deal with forcing the failure of diamond on the set of inaccessibles.
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3.14 CLAIM: Assume
(a) &, S,é’o,fl are as in 3.13,
(b) if Spq =: {0 < & : 0 strongly inaccessible, SN is stationary in § and $gne}
is not a stationary subset of k,
(¢) A={Ag:a€8), A, Ca,
(d) Q=Qjy, is as in Definition 3.15 below,
(e) £ C &, is nontrivial.
Then
(o) Q is complete for (c‘:'g,é'l),
(B) Q satisfies the (k, k', £)-pic,,
() Q satisfies the k*-c.c.

3.15 Definition: For k = cf(k),S C k =sup(9),A=(Aa:a € 5), with A, C
we define the forcing notions Q = Q‘[}d as follows:
(a) peQiff
(i) p= (¢, A) = (cF, A7),
(i) ¢ is @ or a closed bounded subset of «, hence has a last element,
(i) A C sup(c) such that,
(iv) fa e CNS then ANa # Aa;
(b) p<qiff
(i) ¢P is an initial segment of ¢?,
(ii) AP = A9 Nsup(cP).

Proof of 3.14: 'We concentrate on part (1), part (2)’s proof is similar. Now

(x); for every a < k,T, = {p € Q: @ < sup(cP)} is dense open.

[Why? If p € Q, let 8 = sup(c?) + 1+ a and ¢ = (c? U {8}, AP), so
p<qel,.]

(*¥)2 If § < & is a limit ordinal, (p; : i < 8) is <g-increasing and sup(c”) <
a;y1 < sup(cPi+') for ¢ < 4, and for limit 4,0; = U{e; : j < ¢} and
{14 1 < 8} is disjoint to S, then p = (U, 5" U5 A7) is a <g-lub of
(p; 11 < 6).

[Why? Just think.]

(*)3 Forcing with Q adds no new sequences of length < & of ordinals (or members
of V).
[Why? By (*)2+ the assumption ®, clause (c) of Claim 3.13 as in [Sh 587,
B.6].]

(¥)4 Q is complete for &
[Why? Just think.]
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(¥)s Q is complete for (£, £,); see [Sh 587, Def. B.5.9(3)].
[Why? Let x be large enough and let (M; : i < &) be ruled by (&,&),
with £p-approximation ((N%,@) : i < &), see [Sh 587, Def. B.5.9(1)] and
r € QN My and S, x, A € My and we have to prove that the player COM
has a winning strategy in the game O g7 (yi.i<6)(Q 7))
For this we proved by induction on é < & (a limit ordinal) the statement
Rs if (M; :i <8),(N*:i < 8),r are as above (but a may be a nonlimit
ordinal) b = (b; : i < 8),b; € [Myy1 N \M;]SIMill and B C MsN &
(or just B C U{b; : i < 8}); then we can find p such that r <p € Q
and AP Nb; = BNb; for every i < § and sup(c?) = MsN «.
Case 1: « nonlimit. Trivial.
Case 2: « limit and for some i < «, we have cf(§) < || M;].

Let 6 = cf(#) and let (J. : & < 6) be increasing continuous, do = 0, ||Ms, || > 6
and (59 =4.

Choose b C M;, 11 N &\Ms,\bs, of cardinality 6 and choose b’ C b such that
¢ € (s8] = AMacﬂn Nb # . By the induction hypothesis, we can find r5, €
Mjs, 41 such that sup(c™) = My, Nk, r <15, 3 < 8§ = A" Nbs = BNbg and r,
is (Mg, Q)-generic for every 8 < §;. Let r{ be such that rs, < r; € QN Ms, 41
and sup(bs, Ub) < sup(rg:) and A" N bs, = BN bs, and AT Nb=b. Now
we choose, by induction on & € [2,4], a condition r. such that 7. € Ms, 41,
sup(ce) = Ms, Nk, rH < re, [C € [2,6) = r¢ <reland B < 8. = A™Nbg = BNb,
and r. is (M,,Q)-generic for y < §.. For limit ¢, 7. is uniquely determined and
is € Q by the choice of r{. For ¢ nonlimit use the induction hypothesis for
(Mg :B € [(55 + 1,(5€+1]>.

Case 3: Neither Case 1 nor Case 2.

So « is strongly inaccessible, call it § and 8§ = My N &; so as {k,S} € My <
(H(x), €, <%), necessarily § = sup(S),d € Spq and ~Oons (e.g., N S is not
stationary in S). Choose for each 8 < # an ordinal y3 € Mpy1 N k\Mg\bs and
let Aj = {j <i:v; € Apyna} forie SN6.

Now (A} : i € SN #) cannot be a diamond sequence for 6, hence we can
find X C 6 and club C~ of # such that d € X NS = Ay # XN4. Let C =
{t <0 :¢limit, (Vj < i)(o; < %) and i € C~ and M; Nk = i}, clearly C is a
club of 6. Let bf = ag U {y3}, B* = BU{y3 : 8 € X}, and proceed naturally.
Hs.14

3.16 Remark: So we can iterate and get that (GCH and) diamond fail for “most”
stationary subsets of any strongly inaccessibles. We shall return to this elsewhere.
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§4. Existence of non-free Whitehead (and Ext(G,Z) = {0}) abelian
groups in successor of singulars

In [Sh 587], the consistency with GCH of the following is proved for some regular
uncountable «: there is a k-free nonfree abelian group of cardinality x, and
all such groups are Whitehead. We use x inaccessible, here we ask: is this
assumption necessary for the first such x?

The following claim seems to support the hope for a positive answer.

4.1 CLAIM: Assume
(a) X is strong limit singular, o = cf(A) < A,k = AT = 2%,
(b) S C {6 < & :cf(d) = o} is stationary,
(c) S does not reflect or at least,
()~ A= (As:0 € S),otp(4s) = o,sup(4s) =0, and
A is A-free, i.e., for every a* < k we can find {as : § € &* N S), a5 < & such
that (As\as : § € SN a*) is a sequence of pairwise disjoint sets,
(d) (G;:1i < o) is a sequence of abelian groups such that:
() 6 <o limit = Gs = U;5Gs,
(B) i< j<o=G,;/G,; free and G; C Gy,
(v) Go/ U<, Gi is not Whitehead,
(8) |Gqo| < A,
(¢) Go = {0}.
Then

(1) There is a strongly k-free abelian group of cardinality x which is not
Whitehead, in fact I'(G) C S.

(2) There is a strongly k-free abelian group G* of cardinality s satisfying
HOM(G*,Z) = {0}, in fact I'(G*) C S (in fact, the same abelian group can
serve}.

(3) We can rephrase clause (d)(v) of the assumption, i.e., “G,/J;., G: is not
Whitehead”, by:

(d)(v)~ some f* € HOM(U;., Gi,Z) cannot be extended to f' € HOM(G,,Z).

We first note:

4.2 CLAIM: Assume
(a) X strong limit singular, o = cf(\) < A,k = 2% = AT,
(b) S C {6 < k:cf(d) =0 and X divides d for simplicity} is stationary,
(c) As C 6 = sup(As), otp(As) = 0, As = {as¢ : ¢ < o} increasing with ¢,
(d) hg: kK = £ and hy: kK — o are such that
(Vo < £)(¥¢ < 0)(Vy € (o, K)HFB € [, 7+A])(ho(B) = @ and by (B) = (),



Vol. 134, 2003 SUCCESSOR OF SINGULARS 151

and (Va < k)hg(a) < a,
(e) A= (\¢:( <o) is increasing continuous with limit X such that Ao = 0 and
(<o=> /\<+1 = Cf()\<+1) > 0.
Then we can choose {(gs, {7¢ : { < X)) : 8 € S) such that
ONE ('yg : { < A is strictly increasing with limit 6,
(i) if A¢ < € < Acqa then ho(v]) = ho(1},) = @s¢ and hi(79) = hi(13) = ¢,
(iii) hj a partial function from & to &, sup(Dom(h})) < 7&5 ford € S;
®, for every f: k = k,B € [s]<* and g} : k = A¢ya for ( < o there are
stationarily many § € S such that:
(i) b3 =f 1B,
(i) if Ac £ & < Ag41 then gg('yg) = gg('yj\sc).

Remark: Note that when subtraction or division* is meaningful, (-, is quite
strong.

Proof: By the proofs of 1.1 and 1.2 (one can use guessing clubs by as¢’s, and
can demand that ﬁgc, Bcs € lasc, asc + )

But to help the reader, we give a proof.

Let A = ZKU Ai, A; increasing continuous, Ajy1 > 2%, Mg = 0,A; > 2°. Let
M; < (H((2%)*),€,<*) be increasing continuous, |M;]] = A, (M; : j < i) €
Miy1,A+1C M; and {4, hg, k1, A} € My. For a < A, let o = U;<o @a,i such
that |ae;| < A; and aq; € Mayq and even (< ag; 11 < 0 >: 3 < a) € Maq.
Without loss of generality § € S = ¢ divisible by A“ (ordinal exponentiation).
For 6 € S let 3% = (3 : i < &) be increasing continuous with limit d, 3 divisible
by A and > 0. For 6 € S let (b : i < o) be such that 7 C 32, [bJ| < A;, 82
is increasing continuous in ¢ and § = J;, b} (e.g., b} = Ujs ja<ci ags U ).
We further demand A; C 2 N A. Let (% : a < A*) list the two-place functions
with domain an ordinal < At and range C At. Let be the set of functions b,
Dom(k) € [s]<*, Rang(h) C &, so |H| = k. Let S = U{Sy, : h € H}, with each
Sy, stationary and (S, : h € H) pairwise disjoint. Without loss of generality
§ € Sy, = sup(Dom(h)) < 3. Let h; be h when & € S,. We now fix h € H and
choose 4% = (y$ : i < X) for § € S), such that clauses O, + (O, for our fixed h
(and § € S, ignoring h in (3),) hold; this clearly suffices.

Now for 6 € S;, and i < ¢ and ¢ € %0 we can choose Cf’g,e (for £ < Aj41) such
that:

* Namely, g belongs to some additive group G* for 8 < &, § € Hom(G*, H*),
9(B) = g(xp), then for some ¢ as in (),, we have g(x25 =g ) is Op~; similarly
£ ¢

for multiplicative groups.
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f, ge €< Ai+1) 18 a strictly increasing sequence of ordinals,

(
B <¢lye < B2 (wecan even demand (¢, . < B2 + ),
ho(¢? $g,e) = as; and hi(¢? g.e) = by
for** every aj,ap € b2 o@)» the sequence (Min{Ay;), fa o2, ¢¢ ge) 1€ <
Ai+1}) is constant, i.e., one of the following occurs:
(@) & < i1 = (a2,¢)y) ¢ DOm(fal)
(8) € < X1 = fa, (02, ¢, ) = fa (a2, ¢f; ) well defined,
(v) e <X £, (QQ,C?,Q,E) > Aj, well defined. We can add <f;1(a2’<g,g,e) :
g < A;) is constant or strictly increasing,
(E) for some j < o, we have (Ve < Aj1)[¢} 9. € Qa,j] where
o= sup{(;gg,€ 1€ < Aj41} (remember o # A;4; are regular).
For each function g € %¢ we try 79 = (7?*9 e < AN if A €& < Ajpq then
’9 = (z e Now for some g it works. 6.

Proof of 1.2(1): Let M = U{M, : a < k}, M, < (H(2%)*), €) has cardinality
A, M, is increasing continuous, (Mpz : 8 < a) € M, and (F; : i < o) belongs to
M. Let Eg = {6 < & : MsNr =47} and E = acc(E). The proof is like the proof
of 4.2 with the following changes:
(i) B eEyforé6 € SNE,
(i) in clause (A) we demand (¢}, _: g € G,e < Ai41) belongs to Mg . (hence
also (¢2, .9 € G,e < Ajy1:j < i) belongs to Mgs ),
(iii) clause (c) is replaced by: (7 . € Fi({C] 141y * € < Aj1 and j < }).
b2

Proof of 4.1: (1) We apply 4.2 to the (4s : § € S) from 4.1, and any hg, by as
in clause (d) of 4.2.

Let {t%/ + G; : v < 6“7} be a free basis of G/ /G fori < j< 0. Ifi=0,j=0
we may omit the i, j, i.e., t; = tg 7 and 6 = 099 Let 0+ Ro = |G,| < A; actually
S<+1 < )¢ is enough; without loss of generality 6§ < A; in 4.2. Let 5,
where £(C,4) = U, Ac+1+iford € 5,( <a,i <.

Let 85(x) = Min{8 : 8 € Dom(h}), h}(8) # 0}, if well defined where hj} is from
4.2.

Clearly (see (O, (iii) of 4.2) we have B5(x) ¢ {82, : ¢ < 0,7 < 6} (or omit
/\c,ﬂ?,i for ¢ too small). We define an abelian group G*: it is generated by
{za :a<k}U {yfy 1y < 0 and § € S} freely except for the relations:

()1 Xyeo 0¥y = f{ben(zgs — Ty )¢ <oandy< et}
when Gy b= 3 o, tyty = 3o {bet551! 1 ( <o and ¥ < 6441} where

Y}
= Ve

** We can use a colouring which uses, e.g., ((]‘-‘,g)e 1 j <i,e < Ajy1) as a parameter.
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@, bc 4 € Z but all except finitely many are zero.
There is a (unique) homomorphism g5 from G, into G* induced by gs(t,) = y2.
As usual it is an embedding. Let Rang(gs) = G<%>.
For 8 < & let G5 be the subgroup of G* generated by

{xa:a<6}u{yf§:7<60’”and(5€/305}.

It can be described similarly to G*.
Fact A: G* is strongly A-free.

Proof: For of < fB* < k, we can find (a5 : § € SN (a*, B*]) such that
(As\as : § € SN (a* B*]) are pairwise disjoint and disjoint to o* hence the
sequence ({/32’1. 1< 0,(e Min{¢ <o: /32’0 >ash,0)}:8€ SN (a* B ) isa
sequence of pairwise disjoint sets.

For 6 € SN (a*, 3*], let {5 = Min{( : 52,0 > as} < 0. Now easily Gj. ., is
generated as an extension of G},. , | by {g(;(tg&"’) 1y < %9 and § € SN(a*, B*]JU
{zo : @ € (a*, 8] and for no § € SN (a*,B*] do we have o € {82, : i < 6
and ¢ < (5}}; moreover, G5, is freely generated (as an extension of G. ;).
So G%. /G441 is free; as also G is free, we have shown Fact A.

Fact B: G* is not Whitehead.

Proof: 'We choose, by induction on o < &, an abelian group H, and a homo-
morphism h,: Hy — G, = ({zg: 8 <a}U{yd : v < 6,6 € SNa})q- increasing
continuous in «, with kernel Z, hy = zero and k,: G}, — H, is a not necessarily
linear mapping such that h, o k, = idg;. We identify the set of members of
H,, Gy, Z with subsets of A x (1 + «) such that Oy, = Oz = 0.

Usually we have no freedom or no interesting freedom. But we have for a =

641, € S. What we demand is (G¢®) — see before Fact A):

()2 letting H<%> = {z € Hsy1 : hsy1(z) € GO}, if s* = gs(ap,(v)) € Z\{0}
(gs from 4.2), then there is no homomorphism f5 : G<®> — H<%> such
that

(@) fg(xﬁg,i) - k(;(xﬂgvi) € Z is the same for all i € (|J
(B8) hspyo0fs =idg<es.
[Why is this possible? By non-Whiteheadness of G7/|J; <o Gt that is, see
(d)}(y)~ in 4.1.]
The rest should be clear.

e<¢ Ae, ’\C}

Proof of 4.1(2):  Of course, similar to that of 4.1(1) but with some changes.
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Step A: Without loss of generality there is a homomorphism f* from (J;_, G' to

Z which cannot be extended to a homormopshim from G, to Z.

[Why? Standard, see [Fu].]

Step B: During the construction of G*, we choose G}, by induction on a < &,
but if A3(0) from 4.2 is a member of G} in (*); we replace (xﬂgﬁ - x7§c) by
(xﬁgﬂ — g + fr(5411h5(0)); note that f*(t5<+!) € Z and h3(0) € Gj.

So if in the end f: G* — Z is a non-zero homomorphism, let 2* € G* be such
that f(z*) # 0 and* |f*(x*)| is minimal under this, so without loss of generality
it is 1. Hence for some § € S we have:

()3 f(gs(0)) = 1z,
(*)a f(x7§<+1+1+~) = f(x'yf\c) for v € Act1\Ac,
that is, f(xﬂg,q) = f(x7§,<)
(in fact, this holds for stationarily many ordinals § € S).
So we get an easy contradiction.

(3) The proof is included in the proof of part (2). | PR
We also note the following consequence of a conclusion of an instance of GCH.

4.3 CrAIM: Assume
(@) A=p* and p > o = cf(p),
(b) A= X? where 6 = 2°
(equivalently p® = p* > 29),
() S C{é < A:cf(d) =0} is stationary,
(d) 7= {ns:d € S) with n; an increasing sequence of length o with limit 6.
Then we can find (A° : § € S) such that:
() A% =(4%:i <),
(8) AS € [6]<# and sup(A?) < 4,
(B)* for some (X! :i < o) increasing with limit A, |A?| < A},
(y) for every h: A — A, for stationarily many § € S we have (Vi < o)
[h(15()) € 42).

4.4 Remark: (1) We can restrict ourselves to h: A — p in clause (7), and then,
of course, we can use (< AY 14 < o >:§ € S) with A? C p.
(2) We can add to the conclusion “A¢ C ns(i + 1) if 7 guess clubs.

Proof: Let ()\; : i < o) be increasing continuous with limit x. Let (&, : 7y < A)
list %X, so &, = (a,. : ¢ < @) and, without loss of generality, o, < . For
each § € S let (b : i < o) be an increasing continuous sequence of subsets of

* What does this mean? f*(z*) is an integer, so its absolute value is well defined.
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with union § such that [b?| < p and sup(b?) < &; for (B)*, moreover, [b] < \;;
this is possible as cf(d) = 0 = cf(p) < p. Let (g : ¢ < 6) list 0 and define
A = oy iy € b‘;s(i)}. Now A5 is a set of cardinality < tbgs(i)l < p and
sup(Af‘é) < sup(bge(i)) (as we have demanded that o < 7y), but sup(bge(i)) <é
by the choice of the bf’s, hence sup(Af"s) < 4. So for each € < 6 the sequence
A =: (A9 . § € S), where A0 = (A% ;i < o) satisfies clauses (o) + (8) and
(8)" when relevant. Hence it suffices to prove that for some ¢ < @ the sequence
A® satisfies clause (7), too. Assume toward a contradiction that for every & < 6
the sequence A* fails clause (7), hence there is h.: A — A which exemplifies this,
that is, for some club E. of A\,6 € E. NS = (3i < o)[h.(n5()) ¢ A>°]. So for
every 3 < X the sequence (h.(3) : € < ) belongs to ), hence is equal to ap(3)
for some h(3) < A. Clearly E = {§ < A: 4 a limit ordinal and (V3 < §)h(B) < &}
is a club of A (recall 8 < A), hence we can find §(x) € ENS. Wedefine g*: 0 — o
by g*(i) = Min{j < o : h(ns)(J)) € b?}, now g* is well defined as, for ¢ < o, the
ordinal h(ns(,)(2)) is < d(*) (as 6(x) € E) and 15,(i) < d(x)) and 6 = Ujco b?.
As g* € 70, clearly for some ¢(x) < 6 we have g.(,) = g*.

So, for any i < a, let v; = h(nsx)(9)); now h(ns) (7)) € bg*(i) {by the choice
of g*) and g*(¢) = g.(+)(i) by the choice of e(x), together with ~; € b But

ge(x)(i).
Af(*)"s(*) = {0y es) 1Y € bge(*)(i)} by the choice of Af(*)"s(*), hence a.,, () €
Af(*)’é(*); but as v; = h(ns()(i)), by the choice of h we have h.(.) (750 (2)) =
450),80)
Qye(x) € A4 :

So (Vi < o) (he(115s) () € AS*"°™) which, by the choice of h,, implies 5(x) ¢

E(s), but 6(x) € E C [, ., E:, a contradiction. [ )
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