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ABSTRACT 

On the one hand, we deal with (< a)-supported iterated forcing notions 

which are (E0, C1)-complete, bearing in mind problems on Whitehead 

groups, uniformizations and the general problem. We deal mainly with 

the case of a successor of the singular cardinal. This continues [Sh 587]. 

On the other hand, we deal with complimentary ZFC combinatorial results. 
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§1. G C H  i m p l i e s  fo r  s u c c e s s o r  o f  s i n g u l a r  n o  s t a t i o n a r y  S h a s  

u n i f o r m i z a t i o n  

We show t h a t  a m a j o r  improvement  in [Sh 587] over [Sh 186] for inaccessible 

(every l adder  on S has  un i fo rmiza t ion  ra the r  t han  some ladder  on S)  canno t  be  

done for successor of  singulars.  This  is cont inued in §4. 

1.1 FACT: Assume 

(a) ~ is s t rong  l imi t  s ingular  wi th  2 ~ = A +, let  cf(~) = a 

(b) S C_ {5 < ~ + :  cf(5) = cr} is s ta t ionary .  

Then  we can find (<  7~ : i < a > :  5 E S)  such t ha t  

(c~) 7~ is increasing (wi th  i) wi th  l imi t  6 

(/3) if/~ < A and  f : ~+ ~ # then  the following set is s t a t iona ry :  

{5 E S:  f("/52i ) = f(~26i+1) for every i < or}. 

Moreover  

(/3) + if f i  : )~+ -+ #i, #i < A for i < a then  the  following set is s t a t iona ry :  

{5 E S :  £ (7~i )  = f~(72~i+1) for every i < a} .  

Proof: This  will  prove 1.2, too.  We first concent ra te  on (a )  + (~) only. 

Let  ~ = ~ < o  ~ ,  hi a card ina l  increasing cont inuous wi th  i, ~i+1 > 2 ~ ,  A0 > 

2 °.  For  a < $+,  let  a = Ui<o a~,i such t ha t  la~#l  ___ ~ .  W i t h o u t  loss of 

genera l i ty  6 E S ~ 6 divisible  by  A ~ (ordinal  exponent ia t ion) .  For  5 E S let  

( /~  : i < a)  be increasing cont inuous  wi th  l imi t  5, ~ divisible  by  A and  > 0. 

For  5 C S let  (by : i < a)  be such tha t :  by c_ ~ ,  Ib~l ___ ~ , b ~  is increas ing 
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continuous with i and 5 -- Ui<a b/5 (e.g., we can let b~ = Uj,,j2<i a ~ - U Ai). 

We further  demand A~ C_ b/~ N A. Let ( f*  : a < A +) list the two-place functions 

with domain an ordinal < A + and range C_ A +. Let  S = U~<x Su, with each S~ 

s ta t ionary and (S u : # < A) pairwise disjoint. We now fix # < A and will choose 

~ = (@ : i < a)  for (i • S ,  such tha t  clause ((~) holds and clause (/3) holds ( that  

is, for every f :  A + --+ # for s ta t ionary many 5 • S ,  the conclusion of clause (/3) 

holds); this clearly suffices. 

Now for 5 • S~ and i < j < a we can choose ~j ,~  (for e < Aj) (really here we 

use just  ~ = 0, 1) such that:  

(A) {~,j,~ : ~ < Aj) is a str ict ly increasing sequence of ordinals, 

(B) /3~ < ¢~j,~ </~/51_1 (can  even  demand ¢~j,~ </3~ + A), 
(C) {~j,~ ~ {{/~ ,j~,e~ : j i  < j , ¢ l  < Aj~ (and i~ < a,  really only it  = i mat ters)} ,  

* a ~ Aj) is (D) for every a , , a 2  • b~, the sequence (Min{Aj, f *  ( ~,~i,j ,e)} : ff < 

constant ,  i.e., one of the following occurs: 

(a)  e < Aj ~ (ae, ff~j,~) ~ Dom(f2~),  

(/~) e < ~ ~ I2, (a:,  i~,~,~) = f *  (a~, ¢~¢,0), well defined, 

(7) ~ < Aj ~ f *  (a2, {/~,j,~) _> )~j, well defined. 

For each i < j < a we use ")~ is strong limit > )~j >_ ~ j~  <j Aj~ + a" .  

Let G = {g : g a function from a to a such tha t  (Vi < a)(i < g(i)}. For 
each function g • G we t ry  ~ , 5  5 ~5 : (~i,g(i),O' i,g(i),l: i < O'), i.e., (~2~ ~, g ~ C2i+1} = 

6 5 
(~fi,g(i),O' "~i,9(i),l}" 

Now we ask for each g • G: 

Question~: Does {~g'~ :5  • S , )  satisfy 

(~/f • A + ]~)(~stat(~ • S . ) ( A  9 6 ) = 

i<a  

If for some g • G the answer is yes, we are done. Assume not; so for each g • G 

we can find fg: A + --+ # and a club Eg of A + such tha t  

g,6 

which means 

Let  G = {go : ~ < 2~}, so we can find a 2-place function f*  from A + to # 

satisfying f * ( a , a )  = fg~(a) when ~ < 2 ~, a < A +. Hence for each c~ < A + there 

is 7[a] < A + such tha t  f*  r c~ -- f~[~]. 
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Let  E* = Ns<2o Eg~ n {6 < A + : for every a < 5 we have 7[a] < 6}. Clearly it 

is a club of A +, hence we can find ~ E S u f~ E*. Now/3~+ 1 < 5 hence 7[/3~+1] < (~ 

(as 5 • E*),  but  5 -- Ui<o bi 5 hence for some j < a, ~[~/51_1] • 55; aS b~ increases 

with j we can define a function h: a --+ a by h(i) -- Min{j  : j > i + 1 and # < Aj 

and 7[/~hl] • b~}. So h • G, hence for some ~(*) < 2 ~ we have h = g~(.). Now 

looking at the choice of ~h(i),0, ~h(i) , l  we know (remember 2 ° < A0 C_ b~ and 

tt < Ah(0) 

5 * * ( re  < 2°)(Va • bh(~))[Rang(f~) C # & Dom(f~)  D /35 * - - ~+1  - +  f ~ ( c ,  q , h ( ~ ) , o )  

In part icular  this holds for ¢ = e(*), a = ~/[/3]+1], so we get 

• ~ ,  5 * 5 
f-~[/3/~+l]( ( ) '  ¢~,h(i),O) = f~[/3/5+1 ] (~(*) '  ;i,h(i),l)" 

By the choice of f*  and of 7[/3]+1] this means 

fg,(.) (¢~h(i),0) = fe,(.)(~h(i),l)); 
f .  (..a~(.),5~ . .  / ge(.),5, but  h = g~(.), and the above equality means g,( .)~2i J = 7g~(.)(72i+1 ), and 

this holds for every i < or, and 5 • E* ~ 5 • Eg~(.), so we get a contradict ion to 

the choice of (fg.(.), E~(.)). So we have finished proving (c 0 + (/3). 

How do we get (/3)+ of 1.1, too? The  first difference is in phrasing the question. 

Now, for g • G; it is 

Questiong~: Does (~g,~ : 5 • S , )  satisfy: 

((Vfo• ~+#o)(Vfl• ~+# l ) - . - (Vf i  • "x+# i ) ' " ) i< , "  

(~sta, t(~ • S#) (  A g,5 g,5 

i<a 

I f  for some g the answer is yes, we are done; so assume not. Therefore we have 

fg# • ~+ (#~) for g • G, i < cr and club Eg of A + such that  

g5 • s ,  n < # 

A second difference is the choice of f*  as f * ( a c  q- i , a )  = fg,,i(o~) for ¢ < 2 a, 

i < o, a < A +. 

Lastly, the equations later change slightly. |1.1 
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1.2 Fact (1) Under the assumptions (a)+(b) of 1.1, letting A = (Ai : i < 0) 

be increasingly continuous with limit A such that  2 ° < Ao, 2 ~ < A~+I we have 

(*)1 + (*)2 where 
(*)1 we can find (< 7~ : ~ < A >: 6 • S} such that  

(a) 7~ is increasing in ~ with limit 6, 

(/3) + if f~: A+ ~ Ai+l, for i < 0, then the following set is stationary 

{6 • S :  f~(7~) = ]~(7~) when ~,~ • [Ai,A~+a) for every i < a}; 

(*)z moreover, if F~: [A+]<~ ~ [A+]~+ for i < a (or just Fi: [A+]<~ --+ [A+]~) 

and sup(w) < min(Fi(w)) for w • [A+]<~, for each i < a, then in addition 

we can demand 

(i) {7~: ~ • [Ai,Ai+I]} C_ Fi({7~ : ff < Ai}), 

(ii) [{(7~ : ¢ < ~*): 7~* = 7}[ -< A for each 7 < A+ and ;* < o. 
(2) Assume A, (A i :  i < o) are as in part (1) and (C6:5  • S) is given; it guesses 

clubs (for A +, which means that for every club E of A+ the set {g • S : C6 C_ E} 

is a stationary subset of A +) and C6 = {cr[5, i] : i < 0}, a[6, i] divisible by A ~ 

increasing in i with limit g; (cf(a[6,i + 1]) : i  < o) is increasing with limit A and 

let fl(6, i) = ~j<~ Aj x cf(a[5,j]). Then 

(*) we can find (< 7~: ( < A >: 5 • S) such that 

(a) (7~ : ( < A) is increasing with limit 6, (for 6 • S), 

(/3) sup{7~ : 7~ < fl[6, j + 1]} = c~[6,j], 

(3') for every fi • (~+)(Pi) for i < o where #i < A and club E of A +, 

for stationarily many 6 • S we have {7~: i < A} c E and fi(7~) = 

f~(%6), when ; ,  e • [3[6, i] + Ai~, fl[5, i] + Ai~ + Ai) and ~ < cf(a[5, i])). 

(1) The same proof as in 1.1 for (*)1, but see a proof after the proof of Proof: 

4.2. 

(2) Should be clear, too. I1.2 

§2. Case  C: Forcing  for successor  of  s ingulars  

We continue [Sh 587]. 

2.1 Hypothesis: (1) A strong limit singular o = cf(A) < A, n = )~+, #* > n, 

2 ~ = A+. 

2.2 Definition: (1) Let ~<~(#*) be the family of~o C_ {a : a = (ai : i _< a) where 

a < t;, a~ E [#*]<~ increasing continuous, and ai N t; E g} such that: for every 

0 = cf(0) < A, )( large enough and x C 7-/(X) we can find (N~ : i < 0) obeying 

6~ C ~o (with error some n, see [Sh 587, B.5.1(1)]) and such that x E No; this 

repeats [Sh 587, B.5.1(2)]; formally we should say t h a t / 9  obeys ~ for #*. 
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(2) ¢ ~ ( # * )  is the family o f~ l  C_ {5 : a = (ai : i <_ a),  ai increasing continuous, 

i < a ~ lail < A and A + 1 C Ui<o ai}. 

2.3 Definition: (1) We say 2~/ -- (Mi : i ~ a) is ruled by ($0, ~1) if, for some 

X > P*: 

(b) for* some (217/i : - 1  < i < a) and (p~i : - 1  <_ i < a) we have: 

(~) M~ ~ (~(x), e, <~), 
(~) ~ / o b e y s  some 5 C ~1 for some finite error (so for some n, for every 

i, ai C_ MiM#* C_ ai+n) and/~/  I ( i+1)  C Mi+l  a n d j  < i ~ My ~ Mj  

and Mi is increasing continuous, 
" j~  ~2 IIMill 

(7) [ i+lJ C_ Mi+l  for i a limit ordinal < a,  
(5) f/I i = (Mia : c~ <_ 5i),fili = (N~ : a <_ 5,) and M~ -~ N / -~ 

(n(X),  e , < x )  and A + 1 C_ N / and IIM/]] = ]IM/]I IIMdl for a < 5i 

non-limit, [M~]IIM~II C i _ M~+~, for Z < 5~, 

(~) (N~ : a < 5i} = ~ i  obeys some bi C ~o for some finite error and 
.~/i, ~ i  are increasing continuous, 

(¢) Mi+l = M i C g i and ((~/J,/YJ) : j < i) ~ Mg, 

(~7) 5i C_ Mi+~ (hence 5i < A) and A C_ N / ,  

(0) cf(5i) > 2 IiM~ll for i limit, 
i (~) ]~i [ (a + 1),]l~/i [ (a + 1) ~ M~+ 1 for a < 5i, i < a,  hence N~ = 

Sk(n(x),e,<;~)(M~ u A) when i < a and/3 < 5i is a limit ordinal, 

(~) N ~ ~ - ~ N o  ~ f o r i < ~ ,  

( A ) Mi -.( M~, Mi  e M~o. 
(2) We say above tha t  ((~/i  : i < a),  (]Vi: i < a)) is an (~o, ~ ) -approx imat ion  

to M. 
(3) Let ~<~(p*) be the family of ($0,$~) such that:  

~1 ~..~ (a) ~o ~ E<~(#*) and ~1 ~ <a~,/~ }, 
(b) for X large enough and x ~ H()() we can find ~ / w h i c h  is ruled by 

(~o, $~) and x e Mo, 

(c) ~o is closed (see below). 

(4) $o is closed if (ai:  i <_ a} ~ ~o, 7 -</3 _< a implies (a i :  i ~ [/3, 7]} ~ Eo- 

Remark:  (1) In Definition 2.3(1), letting N = /~o^fi/1 . . . .  i.e., JY 

( N i :  i < A),N~ =: N~ if e = ~ j < i b j  + a; hence gg(/Y) = A and N [ (i0 + 1) E 

Nio+l so N is -<-increasingly continuous, and 7 < A :=~ JY [ 7 E N~+I. 

* We may later ignore the i = -1  in our notation. 
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2.4 CLAIM: (1) Assume~o E ~<~(p*) and(~ = (Fa ,9 i  : i < 7) i s a  (< ~)- 
support iteration such that I~-~ "Qi is strongly ~o-complete" for each i < 7; see 
[Sh 587, 8.5.3(3)]. Then P~ is strongly So-complete (hence P~/P/~). 

(2) If  Q is ~o-complete, then V q ~ ~o non-triviaL 

Proo~ By [Sh 587, B.5.6] (here the choice "for any regular cardinal 0 < n" 

rather than  "for any cardinal 0 < n" in [Sh 587, B.5.1(2)] is important) .  |2.4 

2.5 Definition: Let (~o,~1) • ~<~(#*) and let Q be a forcing notion. 

(1) For a sequence /~/ = (Mi : i <_ c~) ruled by (~o,~1) with an ($0,~l)- 
approximation ((21~/i : i < or), (f / i  : i < ~r)) and a condition r • Q we define a 

game ¢) ~,(~:i<o),(s,:i<o) (Q, r) between two players COM and INC. 
The play lasts a moves during which the players construct a sequence 

(io,p,(pi,qi : i o -  1 ~ i < a)) such tha t  io < cr is non-limit, p • Mio NQ, 
Pi • Mi+l N Q, qi = (qi,~ : c < 5i) c_ Q (where 5i + 1 = ~g(f~i)). 

The player INC first decides what is io < 5 and then it chooses a condition 

p • Q a Mio stronger than r. Next, a t  the stage i • [io - 1, 5) of the game, COM 

chooses p~ • Q a Mi+l  such that:  

(i) p <_q Pi, 
(ii) (Vj < i)(V¢ < 5j)(qj,~<Qpi), 

(iii) if i is a non-limit ordinal, then p~ • Q is minimal satisfying (i)+(ii), 

(iv) if i is a limit ordinal, then Pi • Q. 

Now the player INC answers, choosing an increasing sequence qi = 

(qi,~ : ¢ < 5i) such tha t  P i _<q qi,o and qi is (.~i I [a, (~i], Q)*-generic for some 
a < 5i (see [$h 587, B.5.3.1]) and /3 < 5~ ==~ qi F (/3 + 1) • Mi,Z+I. The player 
COM wins if it has always legal moves and the sequence (Pi : i < a) has an upper 
bound in Q. 

(2) We say tha t  the forcing notion Q is complete for (~o, $1) or (~o, ~l)-complete 
if 

(a) Q is strongly complete for ~o and 

(b) for a large enough regular )~, for some x C 7-/(~), for every sequence /~/ 

ruled by (~0 ,~ )  with an ~o-approximation ((/?/~ : i < ~), ( ~ i :  i < c~)) and 

such tha t  x • Mo and for any condition r • Q N Mo, the player INC does 
,b 

not have a winning strategy in the game ¢)~,(~*:i<o),(s~:i<o)(Q, r). 

2.6 PROPOSITION: Assume 

(b) Q is a forcing notion for (~o, ~1). 
Then L) • 
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Proof: Straightforward (and not used in this paper). 

2.7 PROPOSITION: Assume that £ E ¢<~(#*) is closed and (~ = 

(P~, Q(~ : s < 7) is a (< ~)-support iteration of forcing notions which are strongly 

complete for £. Let T = (T, <+, rk) be a standard (w, so)'r-tree (see [Sh 587, 

A.3.3]), [IT[[ < A,w C_ % s o  an ordinal, and let p = (Pt : t E T) E FTr'(Q); see 

[Sh 587, A.3.2]. Suppose that  Z is an open dense subset of P'r" Then there is 

(t = (qt : t E T) E FTr ' (Q) such that p <_ q and, for each t E T, 

(a) qt E {q [ rk(t) : q E Z}, and 
(b) for each s E Dom(qt), one of the Following occurs: 

(i) qt(a) = pt(s) ,  
(ii) I[-~. "qt(s) E Q~" (not just in the completion ~ ) ,  

(iii) I~1,, "there is r E Q a such that % ~ pt(s)  <_ r <_ qt(a)" (not really 

needed). 

Proo~ Just like the proof of [Sh 587, B.7.1]. 
Our next proposition corresponds to [Sh 587, B.7.2], which corresponds to 

[Sh 587, A.3.6]. The difference with [Sh 587, B.7.2] is the appearance of the 

2.8 PROPOSITION: Assume that g E £<.(#*)  is closed and Q = (1~,, Q~ : a  < 7) 
is a (< ~)-support iteration and x = (x~ : s < 7) is such that 

I~-~, "Q,~ is strongly complete for £ with witness xa" 

(for s < 7). Further suppose that 

(s) (fiI, 5) is an ~-complementary pair (see [Sh 587, B.5.1]), iY = (Ni : i ~ 5) 

and ~;,~,Q c No, 
(/3) T = (T ,<+ , rk )  E No is a standard (w,o~o)'~-tree, w C_ 7 n No, llwll < 

cf(5), so is an ordinal, al  = ao + I and 0 E w, 

(7) P = (Pt : t E T I E FTr ' (Q) M No, w E No, (of course So E No, on FTr '  see 

[Sh 587, A.3.21), 

(5) M = (Mi : i <_ 5),Mi ~ (7/()(), E,<x) ,Mi  is increasing continuous, 

[Mi] Ilwll+lJ-I c_C_ Mi+a and the pair (f/l r (i + 1), N r (i + 1)) belongs to 

Mi+l, Mi -~ Ni and w U {x, £o, Q} E Mo, 
(e) for i _< 5, Ti = (Ti ,<i , rki)  is such that  Ti consists of all sequences t = 

(t¢ : ( E dora(t)) such that  dora(t) is an initial segment OfT, and 

(i) each t¢ is a sequence of length s l ,  

(ii) ( t¢I  So:  ( E dora(t)) E T, 
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(iii) for each ¢ E dom(t), either t¢(ao) = * or t¢(ao) E Mi is a Pc-name 
for an element of Q¢ and 

i f t¢(a) ~ • for some c~ < ao, then t¢(e~o) 7 ~ *, 
(iv) rki(t) = min(w U {(} \  dom(t)) and <i is the extension relation. 

Then 

(a) each ~ is a standard (w,~ lF- tree ,  ILT~IL <- LLTLI. ILM~II I'wH, and i f i  < 5 then 
T~ ~ Ni+,, 

(b) 7" is the projection of each ~ onto (w, so) and Ti is increasing with i, 

(c) there is ~ = (qt : t E T~) E FTr ' (Q) such that 

(i) p-<p~oj~ 4, 
(ii) if  t E T~\{<:>} then the condition q~ C P~rk~(t) is an upper bound of 

an (_N" I [io, 5], Prk~(t))*-generic sequence (where io < 5 is such that 

t C T~o) and for every/~ C dom(qt) = N5 M rk(t), qt(~) is a name 

/or the least upper bound in Q~ of an (/~'[G~] I [~, 5), Q3 )*-generic 

sequence (for some ~ < 5), 

[Note that by [Sh 587, B.5.5], the first part of the demand on qt 

implies that, ifio <_ ~, then qt F/3 forces that (PT[G~] I [~, 6], ~ [ [~, 6]) 

is an S-complementary pair.] 

(iii) i f t  E T~, t' = proj T~ (t) E T, ~ E dora(t) and t¢(ao) ~ *, then 

qt I (IF-~¢ "Pt,(~) -<9¢ t¢(ao) =:~ t¢(ao) <9¢ qt(~)", 
(iv) q<> = p < > .  

Proof'. Clauses (a) and (b) should be clear. Clause (c) is proved as in [Sh 587, 

B.7.2]. 112.s 

Remark: In 2.9 below it is proved as in the inaccessible case, i.e., the proofs 
of ([Sh 587, B.7.3]) with .~7/, (_~ : i < ~) as in Definition 2.5. We define the 
trees point: in stage i using trees ~ with set of levels w~ = Ms A 7 and looking 
at all possible moves of COM, i.e., p~ ~ Mi+~ N lPT, so constructing this tree of 
conditions in 5i stages, in stage ~ < 5i, has IN { ~ Mi+~l 2'IM~II nodes. 

Now 

p ~ ~7 ~ M~+t ¢~ Dora(p) C_ Mi+l 

but 

p ~ P~ ~ M~+~ ~ Dom(p) C_ Mo = Ui<~o N~, 
p ~ P~ M N / :* Dom(p) _C N~. 

So in limit cases i < a: the existence of limit is by the clause (#) of Definition 

2.3. In the end we use the winning of the play and then need to find a branch in 
the tree of conditions of level a: like Case A using £0. 
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2.9 THEOREM: Suppose that (£o ,~)  • ~<~(#*) (so £o • ¢<,~(#*)) and Q -- 
(P~, Q~ : a < V} is a (< n)-support iteration such that for each a < a 

. IF~ "Q~ is complete for ^ ^ " 

Then 
(a) [t-~ (~o,£1) E <~/~ ], moreover 
(b) P3 is complete for (£o, £,). 

Proo~ We need only part C a) of the conclusion, so we concentrate on it. Let )/ 

be a regular large enough regular cardinal, x be a name for an element of 7-/()/) 

and p E P~. Let x~ E 7/(~) be a Pa-name for the witness that  Q a is (forced to 

be) complete for (£o,£1) and let ~ = (x~ : (~ < V/. Since ($o,£1) E ~<~(#*), 

we f ind /V/=  (Mi : i _< a} which is ruled by (£o,£1) with an £o-approximation 

(hT/i,/~i : - 1  _< i < a) and such that p,Q, x, X,£o, ~1 E M0 (see 2.3). Let 

2V i = (N/ :  ~ <_ 5i) and let hi E £o be such that  (N/, ft./) is an £o-complementary 

pair and let Jr/i = (M / :~ _< 5i). Let wi = {O}UUwj<_i(TNMw j) (for i < 5). By 

the demands of 2.3 we know that  IiwiiI < cf(5~), w/ E M~. 
By induction on i <_ a we define standard (wi, i)~-trees T /E  M/+I and ~ = 

(p~: t E T~} E FTr ' (Q)  MMi+I such that IITiiI _< IiMiiI II~°dl _< ]IM/+ll] i f / i s  limit 
ro.(Wi i+1) ~,.r~ or 0, Wi+l = w~ hence Ti+l = Ti, and i f j  < i _< 5 then Tj = p J(wj',j+l)[li) and 

--proJTj 
CASE 1: i - - 0 .  

Let :T~ consist of all sequences (t( : ( E dora(t)) such that  dom(t) is an initial 

segment of wo and t¢ = < >  for ( E dom(t). Thus T~ is a standard (Wo,0) ~- 

tree, [IT~]I -- IlwolI + 1. For t E T~ let p~O = p I rk~(t). Clearly the sequence 
/3,o __ (p~O: t E T~) is in FTr'((~) ~ N o  1. Apply 2.8 to £o, q~, 2 - 1 ,  To*, Wo and 
fi,o (note that  ] IMZl l t  IIw°ll C MZ 1 for e < 50). As a result we get a (wo, 1)'u 

tree To (the one called 7~ o there) and po = (pO : t • To) • FTr ' (Q)  M M~ 
(the one called q there) satisfying clauses (e),(c)(i)-(iv) of 2.8 and such that 

IIToll __ IlX~o~ll I.~°ll = IIMoll Itw°ll = liMo]l (remember cf(5o) > 211M°II). So, in 

particular, if t • To, ( • dom(t) then t¢(0 ) • M1 is either * of a Pc-name for an 

element of Q_(. 
Moreover, we additionally require that (To,po) is the <~.-first with all these 

properties, so To,/3 ° • M1. 

CASE 2: i = i o + l .  
We proceed similarly to the previous case. Suppose we have defined T~ o and p*o 

such that T/o,p ~° • M~o+l, lIT/oH _~ HMio+III. Let T/* be a standard (w~,io)7-tree 

such that 
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T* consists of all sequences (re : ~ • dom(t)} such tha t  dom(t) is an initial 

segment of wi and 

(t¢: ( • dom(t) M W~o) • T~ o and (V( • dom(t)\w~o)(V j < io)(t¢(j) = *). 
io Thus, T~ o = p-ro "(~"i)J(~o,~o)[~T.- *~ ~ and lIT*I[ <_ [[Mi[[. Let p;i = Pt, F rk~(t) for 

t • T*, t '  = proj~ ° (t). Now apply 2.8 to ~o, Q, ~rio, Ti, ' wi and f , i  (check tha t  

the assumptions are satisfied). So we get a s tandard (wi, io + 1)~-tree 7~ and 

a sequence ~ satisfying (e), (c)(i) (iv) of 2.8, and we take the <~-pair (T/,p ~) 

with these properties. In particular, we will have [[Ti[[ _< [[M/oil- [[Nj°[[ IIM~o]l = 

][Mio+l]] and p~,T~ • Mi+ 1. 
CASE 3: i is a limit ordinal. 

Suppose we have defined T j , f f  for j < i and we know tha t  ( (Tj , f f )  : j < i) 
• Mi+l (this is the consequence of taking "the <~-first such tha t  ..."). Let 

%* = lim((Tj : j < i)). Now, for t • T~* we would like to define p~i as the limit 

of ~ r* . However, our problem is tha t  we do not know if the limit exists. 
proj~ (t) 

Therefore, we restrict ourselves to these t for which the respective sequence has 

an upper bound. To be more precise, for t • T/* we apply the following procedure. 
• T~* ,i ~)  Let tJ = p ro j~  (t) for j < i. Try to define inductively a condition Pt • 

Prk;(t) such tha t  dom(p;  ~) = U{dom(p{~) M rk;( t )  : j < i}. Suppose we 
have successfully defined p~i I a for a • dom(p~i), in such a way tha t  

P~i I a _> ~ i  I a for all j < i. We know tha t  

Pt i I a IF-~, " the sequence (~5 ( a ) :  j < i} is _<Q~ -increasing". 

So now, if there is a P~-name T for an element of Qa such tha t  

p;i I a I~-~, "(Vj < i)(p~j(a) <Q. T)", 

then we take the P~-name of the lub of (~j  (a) : j < i , ~  (a) ¢ ,)  in q~, 

and we continue. If there is no such T, then we decide tha t  t ~ T/+ and we 
stop the procedure.* 

Now, let T/+ consist of those t • T/* for which the above procedure resulted in a 

successful definition of p~ i • Frk*(t ). It might not be clear at  the moment  if T + 

contains anything more than  < > ,  but  we will see tha t  this is the case. Note tha t  

IIT+II-< IIT *II-< H IITjll _< H IIMjll-< 2 _< IIMgII. 
j<i  j< i  

* Generally in such situation we can act as in 2.7 to get a real decision, i.e., if 
P~ I (a + 1) is not well defined while p~ ~ a is well defined then p~i ~ a l~- 
"the sequence (p~ (a) : j < i) has no _<9~-upper bound". But the need has not 
arisen here. 
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Moreover, for nonlimit e > 2 we have [[M~[lllw'll+llr~ +ll _< HM/[[ [IMiH C i M~+ 1 and 
T/+,p *i ~ Mi+I.  Let T / =  T/*,p i = p,i  (this t ime there is no need to take the 

<i- f i rs t  pair as the process leaves no freedom). So we have finished case 3. 

After the construction is carried out we continue in a similar manner  as in 

[Sh 587, A.3.7] (but note a slightly different meaning of the , ' s  here). 

So we let T~ = lim((T/:  i < a)).  It is a s tandard (a, a)~-tree. By induction on 

a E Wo U {7} we choose q~ E ~ and a P~-name t~ such that:  
(a) It-~, "t~ e To& rk~(t~) = a" and let i~ = min{i < 5 : a e Mi} < or, 

(b) I~-~, "t fl = t~ r/3,, for/3 < a,  

(c) dom(qa) = w6 M a,  

(d) if/3 < a then qz = q~ r/3, 

p .r~- - r a < q a  for e a c h i < a ,  (e) P~r°jT',t,~)P T: is well defined and i 
p r o l T  I ( t a )  

(f) for each/3 < c~ 

q~ IF-~, "(Vi < 5)((tz+l)~(i) = * ¢* i < i0 ~) and the sequence 

(io,p .., (/3), oj f /(/3): ig < i < Pr°JT]g (tB+l) • ~B+, - -  

is a result of a play of the game ~[o_~],(~7~[a_ol:i<a)(Qfl, 0Q_~ ), 

won by player COM",  

(g) the condition q~ forces (in P~) tha t  

"the sequence 2f/[G~] r[i~, 5] is ruled by (20, gl) and 
(fi/-i[Gp~J : i~ _< i < a) is its g0-approximation". 

( R e m e m b e r :  g l  is closed under end segments.) This is done completely in parallel 

to the last part  of the proof of [Sh 587, A.3.7]. 

Finally, look at the condition q7 and the clause (g) above. 112. 9 

2.10 Generalization (1) gl is a set of triples (5,(bi,~ti : i < o'), ~ ) ,~ t  = 

(a i  : i _ < (7), g i  = (a  i : ct _ < 6 i ) ,  ~i = (bia : o~ _ < 5i)  E ~ o ,  a i 5i = a i + l ,  

a i  C b~, )~ = (Ai : i < a) an increasing sequence of cardinals < )~, ~ / ~ i  = ,~. 

(2) We say (2f/, ( i f / i :  i < a),  (fi/i:  i < a))  obeys (5, (~i: i < ~) if: M i  N #*  = 

ai, firi obeys ~i all things in 2.3 but Ai > II/~ll, -> II <i I l i j  II, c_ i M~+I 
for a < 5i (so earlier ~i = 2II/dl) • 

2.11 Conclusion (1) Assume 
(a) S C_ {6 < a : of(5) = a} is s tat ionary not reflecting, 

(b) fi = (~6 : 5 ~ S), ~6 = (a6,i  : i <_ a ) ,  5 = a~,o and a6,i increasing with i and 

i < la , l < and sup(a~#) < 5 
[variant: A~ = (A/6: i < a) increasing with limit A], 
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(c) we let #* = n,~o = go[S] = {~: ~z = (ai: i < a ) , a  < t~,ai • n \ S  increasing 
continuous}, 

(d) g l  : {ha :  a • S} 

(or {(aa, (~a,i, ~,a:  i < a}, i a ) :  5 • S} appropriate for (2.10)), 

(e) we assume the pair (go,g1) E < ~ #  ), 

(f) # = p % ~ < r =  c f ( w ) < p .  
^ ^ 

Then for some (Eo, C1)-complete forcing notion I~ of cardinality # we have 

Ik? "forcing axiom for (g0, gl)-complete forcing notion 

of cardinality _< n and < r of open dense sets" 

and in V ~ the set S is still stationary (by preservation of (g0, gl)-nontrivial). 

(2) If clauses (a),(c) holds and ~s ,  then for some ~t, if we define gl as in clause 

(d) then clauses (b),(d),(e) hold. 

Proof." (1) See more at the end of §3. 

(2) Easy. I2.11 

2.12 Application: In V e of 2.11: 

O<A,  A a G 6 = s u p ( A a )  f o r 6 e S ,  

IAaI < 0, 
= (ha : 5 E S), ha: A --+ 0, 

Aa C_ U{aa#+l\a&i : i < ct}, 
then for some h: ~ --+ 0 and club E of ~ we have (V6 C S n E)[ha C* h] 
where h' C_* h" means that sup(Dom(h')) > sup{a : a E Dom(h') and 
a ¢ Dom(h") or 
a • Dom(h") & h'(a) ¢ h"(a)},  

(b) if we add: "ha constant", then we can omit the assumption (iii), 

(c) we can weaken IAhl < 0 to ]Aa n a&i+ll < laa,~l, 

(d) in (c) we can weaken IAal _< 0 v IAa n a&i+ll _< laa,i] to ha r ha,i+1 belongs 
to Mi+l n N~ for some a < 5i 

(remember cf(sup a5,~+1) > A~). 

2.13 Remark: (1) Compared to [Sh 186] the new point in the application is (b). 

(2) You may complain why not having the best of (a)+(b), i.e., combine their 

good points. The reason is that this is impossible by §1, §4; the situation is 

different in the inaccessible case. 

Proo~ Should be clear. Still, we say something in case ha constant, that is (b). 

(a) if 

(i) 
(ii) 

(iii) 

(iv) 
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Let 
Q = {(h,C) :h is a function with domain an ordinal 

~ < ~ = A  +, 

C a closed subset of a + 1, a E C 

and (V5 C C M S M (a q- 1))(h5 C_* h)} 

with the partial order being inclusion. 

For p E Q let p = (h p, CP). 
So clearly if (h,C) E Q and a = Dom(h) < /~ E ~ then for some hi we 

have h C_ hi E Q1, Dora(hi) = ~3; moreover, if 7 < 0 & /~ ¢ S then (h,C) < 

(h U 7[~,5], C U {/~}) E Q. 

The main point is proving Q is complete for (£0,£1). Now "Q is strongly 

complete for g0" is proved as in [Sh 587, B.6.5.1, B.6.5.2] (or 3.14 below which 

is somewhat less similar). The main point is clause (b) of 2.5(2); that  is, let 

M,( f / I  i : i < wa} , (N  i : i < wa) be as there. In the game ~l~,(N~:i<wa)(r,Q) 

from 2.5(1), we can even prove that  the player COM has a winning strategy: in 

stage i (non-trivial): if h~ is constantly 7 < 0 or just h5 I (A~ M ah,i+l\a~#) is 

constantly 7 < O then we let 

= ( U {hq~ : j < i and ¢ < 5i} U P~ 
% 

cl°sure(U{ Cq~ ) )  : j < i and ( < 5i} tA {~3~} 

for some/~i E Mi+l M ~\Mi large enough such that A~ M Mi+l M ~ C/~i. 12.~2 

Remark: In the example of uniformizing (see [Sh 587]), if we use this forcing, 

the density is less problematic. 

2.14 CLAIM: (1) In 2.12's conclusion we can omit the club E, that is, let E = 

and demand (V5 ~ S)(h5 C_* h) provided that we add in 2.12, recalling S c_ 

does not reflect is a set of limit ordinals and 

= (As : 5 E S),A~ C_ 5 = sup(A~) 

satisfies 

(*) 51 ~ 52 in S ~ sup(A& MA~2) < 51M62. 

( 2 ) / f  (V~ C S) otp(As) = ~ this always holds. 

Proof: We define Q - -  {h : Dora(h) is an ordinal < ~ and h(3) ¢ 0A/~ E 

Dora(h) ~ (35 C S)[h~(/~) -- h(/~)] and 5 E (Dora(h) + 1) n S implies h~ _C* h} 

ordered by C_. Now we should prove the parallel of the fact: 
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N ~ if p E Q, a = Dora(p) < /3 < t~ then there is q such that  p _< q E Q and 

Dom(q) =/3. 

Why does this hold? We can find (A~ : 5 E SM ( /3 +1 ) )  such that A~ C_ 

As, sup(As\A~) < 5 and A' = (A~: 5 E S M (/3 + 1)) is pairwise disjoint. 

Now choose q as follows: 

Dora(q) =/3, 

p(j)  i_fj < a, 
q ( j ) =  ha(j) i_fjEA'~\aandSESM(/3+l)\(c~+l), 

0 i_f otherwise. 

Why does A' exist? Prove by induction on/3 that for any .~1, (A~ : 5 E S n ( a + l ) )  

as above and/3 satisfying ct </3 < ~, we can extend .~1 to (A~ : 5 E S M (/3 + 1)) 

which is as above. 12.14 

2.15 Remark: Note: concerning ~ inaccessible we could imitate what is here: 

having Mi+I~N~, Ui<~ Mi = Ui<~ N~. 

As long as we are looking for a proof that no sequences of length < n are 

added, the gain is meagre (restricting the q's by q [ a E N~+I). Still, if you want 

to make the uniformization and some diamond we may consider this. 

2.16 Comment: We can weaken further the demand, by letting COM have more 

influence. E.g., we have (in 2.3) 5i = Ai = cf(Ai) = ]lMi+ll[, Dia lagl+-complete 

filter on Ai, the choice of qi in the result of a game in which INC should have 

chosen a set of players E D~ and 0D~ holds (as in the treatment of case E* here). 

The changes are obvious, but I do not see an application at the moment. 

§3. n+-c.c, and n+-pic 

We intend to generalize pic of [Sh f, Ch.VIII, §1]. The intended use is for iteration 

with each forcing > n - -  see use in [Sh f]. In [Sh 587, B.7.4] we assume each Qi 

of cardinality _< n. Usually/z = ~;+. 

Note: go is as in the accessible case, in [Sh 587], but this part works in the 

other cases. In particular, in Cases A, B (in [Sh 587]'s context) if the length of 

E g0 is < A (remember ~; = A+), then we have (< A)-eompleteness implies 

g0-completeness AND in 3.7 even ~ E go ~ fg(~) = co is O.K. 

In Case A on the So C_ S~, if ~g(~) = A, ax E So is O.K., too. STILL one can 

start with other variants of completeness which is preserved. 

3.1 Context: We continue [Sh 587, B.5.1-B.5.7(1)] (except the remark [Sh 587, 

B.5.2(3)]) under the weaker assumption ~ = ~<'~ > No, so n is not necessarily 
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strongly inaccessible; also in our ~'s we allow ~ such tha t  la6[ = [5[ is strongly 

inaccessible. 

3.2 Definition: Assume: 

[](a) p = c f ( , )  > lal <" for a < ~, 

(b) the triple (~,#*,~o) satisfies: n = cf(a) > Ro,#* _> n,~o C_ {5 : ~ an 

increasing continuous sequence of members  of [p*]<~ of limit length < n 

with ai N n ~ ~}, and 

(c) S G _C {5 < p :  cf(5) _> t~} stationary. 

For g = 1, 2 we say Q satisfies (#, SD,~o)-pic~ if, for some x • ~/(x) (can be 

omit ted,  essentially, i.e., replaced by Q), we have 

(*) if 

(a)  S c S q is s ta t ionary and (#, S, ~o, x) • N~,  

(/3) for a C S, 5a < t~, and 

(i) i f g = l , R  a = ( N / ~ : i _ < h a ) a n d c a = 5 ~ a n d R  a , * = R  a, 

(ii) if e = 2 then ~ a , .  = (N~ : i _< 5 a ) , ~ a  = (N~ : i C c +} 

where ca C_ 5a = sup(ca) ,c  + = ca U {5a},ca is closed, 7 < /3  • ca 

c a N T  E N~, 

(7) (N-% ~a) is ~0-complementary (see [Sh 587, 8.5.3]); so N~ obeys 8a • 

$o (with some error ha)  (so here we have IlN~ II < s,  6~ < tQ, 

(5) /3  a is (/v% Q)Lgener ic  (see [Sh 587, Definition B.5.3.1]), 

(s) ~ • N ~  and 

(i) if g = 1, then for some club C of p for every a • S we have 

((/Y/~,/)~) :/3 • S n C n a)  belongs to N~,  

(ii) if g = 2, then for some club C of # for every a • S n C and 

i < 5a we have ((NZ'* I ( i +  1) ,p ~ [ ( i +  1 ) ) : /3  • S n C} belongs to 

N~+~, 
(() we define a function g with domain S as follows: g(a) = (g0(a), gl(a)) 

where 

a /Na  N a ~ ,  ~o(a) = N6o n ( U  ~,~) and gl(O~) = k 5o,' i ,C)i<61,cEgo(a)/ 
,8<a 

then we can find a club C of # such that:  

i f a  </3 & g(a) = 9(/3) & a E C N S  & /3 E C N S  then 5a = 5~,9(a) = g(/3), 
h N a ~N/3 (really unique), and for each i < 6a the function h for some , 6~h 6~ 

maps N~ to N~,p~  to p~ and {p~:  i < ha} U {p~:  i < 58} has an upper  

bound.  
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(*)(i) 
(ii) 

(iii) 

3.3 CLAIM: Assume [], i.e., (a), (b), (c) of  3.2 and 

(d) £0 is non-trivial, which means: 

for every )~ large enough and x E 7-l(X) there is N = (Ni : i <_ 5) increasingly 

continuous, Ni < (~(X),  E ) ,x  C Ni, []Ni[] < ~ , .~  [ ( i  + 1) C Ni+l and 

obeys some ~ C £o with some finite error n, 

(e) Q is a strongly c~(£o)-eomplete forcing notion (hence adding no new boun- 

ded subsets of g) where ce(~0) =: {a r [a,/~] : 5 e £o and a < ~ ~_ gg(a)}, 

(f) Q satisfies (#, S D, £o)-pice where g C {1, 2}. 

Then Q satisfies the #-c.c. provided that 

(*) £ = 1 or ~ = 2 and £o is fat; see below. 

3.4 Definition: We say £0 E ~<~(#*) is fat, if in the following game D. , , .  (£0) 

between fat and lean, the fat player has a winning strategy. 

A play last, ~; moves; in the a - th  move: 

Case 1: a nonlimit.  

The  player lean chooses a club I~  C_ [#*]<' ,  the fat player chooses aa E Y~ 

and 7~ C_ {c : c C_ a is closed} of cardinali ty < g. 

Case 2: a limit. 

We let ]~  = [#o] <~ and as  = U{a z : /3 < a} and the player fat chooses 

P~ C_ {C : C c_ a is closed} of cardinali ty < ~. 

In a play, fat wins if[ for some limit ordinal a and c E P~ we have: 

/3 e c ~ c n ~  e Pg,  

a = sup(c), 

( a ~ : / 3  • ~ u {o,}} • &. 
3.5 Remark: (0) Wi th  more care in the game (Definition 3.4) we incorporate  

choosing the p~ - s. In 3.2(*)(~)(ii) we can add (Nff+ 1 : /3 • (~ N c) belong to 

Nff+l. 
(1) In Definition 3.4, without  loss of generality c • P~&/3 • c ~ c N/3 • 7~Z. 

(2) If ~ is strongly inaccessible, without  loss of generality we have P~ = P ( a ) ,  

so fat has a winning strategy. 

(3) In general being fat is a weak demand,  e.g., if £0 _~ {a : a = (ai : i _< w/, 

a~ = Un an, ai • [#*]<~ is increasing. 

Proof of 3.3: Case 1: ~--  1. 

Assume p~ C Q for a < tt and let )c be large enough and x as in Definition 3.2. 

We choose (Na,/5 a) by induction on a < p as follows. If ((]VZ,/Y~) : /3 < a) 

is already defined, as £0 is non-trivial there is a pair (Na ,  J )  which is £o- 

complementary  and ((.N~,/5~) : /3 < a ) ,Q ,  (p~ : /3 < # } , p a , a , x  belong to N~ 
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and let fi/a = (N~ : i < 6i). So pa • N~ and we can choose Pa# • N/a+1 such 

that Pa = Pa,o and (Pa,i : i < 6a) is (j~a, Q)l_generic" 

[Why? By the proof of [Sh 587, B.5.6.4].] Now by "Q is (p, S n,~0)-pice'', for 

s ° u : a s o m e a  < 3 i n  ,{Pi : i  < i < 6~} has common upper bound 

hence, in particular, Pa,P~ are compatible. 

Case 2: e = 2. 

Assume pa • Q for a < # and let ,~ be large enough. Let St be a winning 

strategy for the player fat in the game D., , .  (go). Now we choose by induction 

N a  a g a =a~ -a o n i < a ,  t h e t u p l e (  i , / ) ~ ,  ~ ,P~jwherep~ = ( p ~ : c • / ' g }  f o r a < p s u c h  

that: 

(b) 
(c) 
(d) 

(e) 
( f )  

(g) 
(h) 

Can we carry the induction? 

For i limit let M~ = U{M~: j < 
the rules of the game D~,u. (go) and 
Q adds no new sequences of length 

Mg -< (7/(X), E, <~), 

M~ increasing continuous in i, 

[ [ M / ~ H < ~ a n d ( M ; : j < i ) • M g +  l a n d M g M ~ • ~ , a n d p ~ • M / ~ ,  

(yja, M~ N p*, :P~ : j _< i) is an initial segment of a play of O~,u. (go) in 

which the player fat uses his winning strategy St, 

((Mj~,;oj~, Yj~,p~): j _< i,/3 • S) belongs t o / ~ - i  (hence P~ C_ Mj~+l, etc.), 

p a • Q i-i N/~+I, 

if c • io~ and (pi~ni : j • c) has an upper bound then p~,~ is such a bound, 

p.~ • rh{2: : 17 • M/~ is a dense open subset of Q}. 

i} and choose y/a, ;o~ by clause (d), i.e., by 
p~ by clause (g)+(h) (possible as forcing by 

< t¢ of members of V). For i non-limit, let 

S), let y/a = { a : a  e [p*]<~ and c~ e a and 
<~ 

a = p* N Sk (~ (x ) , e ,< ; ) ( { x i  x Q, St ,  a})} (Sk <~ means a • Yi a ~ a M t¢ • ~) and 
a a let (a  i , !i)~ ) be the move which the strategy St dictates to the player fat if the 

i-th move of lean is y a (and the play so far is ( ( Y j a , M ~ N # * , P a , j ) :  j < i}). Now 

we choose Mg = Sk~(x),e,<;)({zi, Q, St,  c~}) and • has already been chosen 

and/?~ =(piac : c • :P~} as in the limit case. 

Having carried out the induction, for each c~ • S in the play 

{(Y/a,M~ M #*,7~):  i < ~} the player fat wins the game having used the 

strategy St, hence there are a limit ordinal ia < ~ and closed ca • 7)i~ such 

that  ia = sup(ca) and {M~ : j • ca U {ia}} obeys some member 6a of go. 

As Q is cf(go)-complete we can prove by induction on j • ca U {ia} that 

s < j & s E C a ~ Q ~  a < a Pe,c,n~ - Pj,c,~nj. 

Let 6~ = ia, N/~ = M~ for i _< 6a and pa = (p~ : i • ca}. Now continue as in 

Case 1. 13.3 
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3.6 CLAIM: /1 c (*) of Definition 3.2, we can allow Dora(g) to be a subset of 

SMC, (Ai : i < #) be an increasingly continuous sequence of sets, IAil < p, N a C 

Aa+l replacing the definition of g, go and by go(a) = N a MAa and gl by gl(a) = 5~ 
( N ~  , N .~, , c)i<~,c~go(c)/ ~- (and get an equivalent definition). 

Remark: If Dora(g) M S D is not stationary, the definition says nothing. 

Proof: Straightforward. 

3.7 CLAIM: Assume clauses N, i.e., (a), (b), (c) of 3.2 and (d) of 3.3. 

For (< ~)-support iteration Q = (Pi,_Qi : i < a), i f  we have IFp~ "_Qi is 

(#, S D, go)-pic e'' for each i < a and forcing with Lim(Q) add no bounded subsets 

of n, then P~ and P~/PZ, for/3 <_ ~/ <_ @(Q), are Co-complete (p, S [~, go)-pice. 

3.8 Remark: We can omit the assumption "Lim(q~) add no bounded subsets 

of n" if we add the assumption cg(g0) E E<~(p*), see [Sh 587, Def. B.5.1(2)], 

because with the latter assmnption the former follows by [Sh 587, B.5.6]. 

Proof: Similar to [Sh f, Ch. VIII]. We first concentrate on 

Case 1: g = l .  

It is enough to prove for P~. 

We prove this by induction on a. Let IFp~ "_Qi is (#, S ~, g0)-pict as witnessed by 

xi and let _Xi = Min{x : _xi E ?-/(X)}". 

Let x = (p*, n, #, S D, Co, ((_~, ~ i ) :  i < eg(Q))) and assume X is large enough 

such that x E 7~(t) and let ((N~,/5 ~) : a E S) be as in Definition 3.2, so S c_ S D 

is stationary and N~ = (Ng : i _< 5~}. We define a g by 

N1 g is a function with domain S, 

N2 g(a) = (ge(a) : e < 2) where 

g0(a) = (N~)n ( U ~ < .  N~), 
gl(a)  = the isomorphic type of (N~ ,  N~, p~, c)c~go(,~). 

Let C be a club of # such that  a E S r~ C ~ ( ( N ~ , ~ )  : /3 < a) E N~ (recall 

t---- 1). 

Fix y such that  Sv = {a E S : g(a) = y and a E C} is stationary. 

Let wa = Ui<~  Dom(p~), w~ = w~ N go(a) for a • Sy (as a • Sy, clearly the 

set does not depend on the a).  For each ( • w~ we define a Pc-name, _Sy,¢, as 

follows: 

~ a?~) } .  S u , ¢ = { a • S y : ( V i <  a)(Pi [ ~ •  

Now we try to apply Definition 3.2 in V ~'~ to 

( (<Ng[G~¢]  : i _< 5. ) ,  <p~(~)[G~¢] : i < (f~>) : a • _S~,¢[G~¢]}. 
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Clearly, if Sy,¢[@~] is a s ta t ionary subset of it, we can apply it and gy,¢ is the PC- 

name of a function with domain Sy,¢ defined like g in ( , )  of Definition 3.2. Now 

gy,¢ is well defined, and actually can be computed  if we use AZ = U{N~, [G~,¢] : 

c~ </3}.  So by an induction hypothesis on c~ there is a suitable 1Pc-name C¢ of a 

club of it st in addition, if Sy,¢[G~,¢] is not a s ta t ionary subset of it, let F¢[G~,¢] be 

a club of it disjoint to it. But  as lP¢ satisfies the #-c.c., wi thout  loss of generality 

C¢ = C¢ so C'  = C N Ncew; C¢ is a club of it. Now choose a l  < a2 from Sy N C t 

and we choose by induction on e E w' = wy * U {0, gg(0)} a condition q~ E P~ such 

that :  

N3(i) ¢1 < ~ ::~ q~ = q~ [ el ,  

(ii) q~ is a bound to {p~  I ¢ :  i < 5 ~ }  U {p~2 [ e :  i < 6~ 2}. 

For e = 0 let q0 = 0. We have nothing to do really if e is with no immedia te  

predecessor in w; we let q~ be U{q~ : el < e, el E wt}. So let e = el  + 1,el  E w'; 

now if q~ E G C_ P ~ ,  G generic over V, then a~, a2 E Sy,~ [G], hence Sy,¢ [G] n C ~  

is non-empty,  hence is stationary, and we use Definition 3.2. 

Case 2: p = 2. 

Similar proof. I3.7 

3 .9  CLAIM: Assume it = cf(it) > n, (Va < it)(la] <~ < it), 

S C {6 < i t :  cf(5) > ~} 

is stationary. /flQI ~ ~ or just  < p, £o E ~ ( p * ) ,  that is C_ {~ : ~ increasingly 

continuous of length < ~, ai E [#*]<'~ and ai • ~ E ~} non-triviM, possibly just  

for one co~nality, say No, then Q satistles ~+-pie e. 

Proo~ Trivial, we get same sequence of condition or just  see the proof  of 

[Sh 587, B.7.4]. 13.9 

3.10 Discussion: (1) Wha t  is the use of pie? 

In the forcing axioms instead of "IQt -< ~" we can write "Q satisfies the 

(p, S D, g0)-pic ' .  This strengthens the axioms. 

In [Sh f], in some cases the length of the forcing is bounded (there w2) but  here 

there is no need (as in [Sh f, Ch. VII, §1]). 

This section applies to all cases in [Sh 587] and its branches. 

(2) Note tha t  we can demand tha t  the p~ satisfies some addit ional  requirements 

(in Definition 3.2), say p2a/= FQ(2~ r [ (2i + 1),iO a [ (2i + 1)). 

Let  us see how this improves somewhat  the results of [Sh 587, B.8] on E<*~(it*), 

see [Sh 587, B.5.7.3]. 
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3.11 Definition: Assume 

® ~ > Re is strongly inaccessible and (do, all) c ¢<~(#*) and 00, 01 are regular 
cardinals > n, 02 a cardinal > n (let 0 = (00, 01, 02), the usual case is 
0o = n+) and d c_ dl is nontrivial (see Definition 3.3, clause (d)) and 

E {1, 2}. 

Let Ax~l,o2 (do, £1, £), the forcing axiom for (do, all, £), and 0 = (0o, 01, ~)2) be the 
following statement: 

[] if 

(i) Q is a forcing notion of cardinality < 01, 

(ii) Q is complete for (£o, dl), see Definition [Sh 587, B.5.9(3)], 

(iii) Q satisfies (0o, S D, d)-pic~, 

(iv) I i  is a dense subset of Q for i < i* < 02, 
then there is a directed H C_ Q such that (Vi < i*)(H n l i  ~ 0). 

3.12 THEOREM: Assume ® of Definition 3.11 and # = #<ol = #<0o _> 0o + 02. 

Then there is a forcing notion ~ such that: 

(a) P is complete for do, 

(fl) P has cardinality It, 

(7) ~ satisfies the 0o-C.C. and even the (~, 0o, d)-pic~, 

(5) ~ is complete for (do, all), hence IF-p "(do, all) • ~<~(It*)" and more, 

(¢) I~-~ "Ax~(do, dl, £). 

Proof: Like the proof of [Sh 587, B.8.2], using 3.7 instead of [Sh 587, B.7.4]. 
113.12 

We may wonder how large can a stationary S C_ t~ be? 

3.13 CLAIM: (1) Assume 

®(a) ~ is strongly inaccessible > Re, 

(b) S C ~ is stationary, 

(c) for letting It* = g and do = do[S] = {a • ~:<~(It*): for every i < fg(a) we 
have ai ~ S} we have do • ¢<,(It*), 

(d) we let d l  --~ dl[S]  ---- {a • ¢<tc(It*): for every nonlimit i < £g(a) we have 

ai ¢ S}. 
Then 

¢~' (" *' [Sh 587, B.5.7(3)]. • j ,  s e e  

(2) The parallel of 2.11. 

We now deal with forcing the failure of diamond on the set of inaccessibles. 
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3.14 CLAIM: Assume 

(a) n , S , £ o , £ ,  are as in 3.13, 

(b) if  Sbd ~-: {0 < ~ : 0 strongly inaccessible, SAO is stationary in 0 and (~sno} 

is not a stationary subset of ~, 

(c) A = ( A s : c ~ c S > , A s C _ a ,  

(d) Q = Q~I is as in Definition 3.15 below, 

(e) ~ C_ ~o is nontrivial. 

Then 

Q is complete for 
(/3) Q satisfies the (~, ~;+, ~)-pice, 

(?) Q satisfies the ~+-c.c. 

3.15 Definition: For ~ -- cf(~), S C_ ~ = sup(S), ~] = (As : a E S), with As C_ a 

we define the forcing notions Q -- ~ d  as follows: 

(a) p • Q iff 

(i) p = (c, A) = (c v, AP), 

(ii) c is 0 or a closed bounded subset of ~, hence has a last element, 

(iii) A C_ sup(c) such that ,  

(iv) i f a • C A S t h e n A A c ~ ¢ A s ;  

(b) p ___ q 
(i) c p is an initial segment of c q, 

(ii) A p = Aq A sup(cP). 

Proof of 3.14: We concentrate on part  (1), part  (2)'s proof is similar. Now 

(*)1 for every a < tc, Z~ -- (p • Q :  a < sup(cP)} is dense open. 
[Why? If p C Q, let /3 = sup(c p) + 1 + a and q = (c p U {/3},AP), so 
p<_qEZa.] 

(*)2 If 5 < ~ is a limit ordinal, (Pi : i < 5) is _<Q-increasing and sup(c w) _< 

ai+x < sup(c p~+I) for i < 5, and for limit i, a i  = U{aj : j < i} and 

{ax+i : i < 5} is disjoint to S, then p = (Ui<~ ~ ,  U~<~ A w) is a _<Q-lub of 

(pi : i < 5). 

[Why? Just  think.] 

(*)3 Forcing with Q adds no new sequences of length < ~ of ordinals (or members 

of V).  
[Why? By (*)2+ the assumption ®, clause (c) of Claim 3.13 as in [Sh 587, 

B,6],] 
(*)4 Q is complete for ~o 

[Why? Just  think.] 
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(*)5 Q is complete for (£0, gl);  see [Sh 587, Def. B.5.9(3)]. 

[Why? Let  )~ be large enough and let (M~ : i  < 5) be ruled by (go, gl) ,  

with So-approximation ((~-i, 0}) : i < 5), see [Sh 587, Def. B.5.9(1)] and 

r E Q n Mo and S, n, A E Mo and we have to prove tha t  the player COM 

has a winning s t ra tegy in the game DM,(~:/<5)(Q, r).] 

For this we proved by induction on 5 < t~ (a limit ordinal) the s ta tement  

N~ if (M~ : i <_ 5), ( ~ i  : i < 5},r are as above (but a may be a nonlimit  

ordinal) b = (b~ : i < 5),bi E [Mi+l n n\Mi] <-IIM~II and B C_ M~ n n 

(or just  B C_ U{bi : i < 5}); then we can find p such tha t  r _< p E Q 

and A p N bi = B N bi for every i < 5 and sup(c p) = M~ N n. 

Case 1: a nonlimit.  Trivial. 

Case 2: a limit and for some i < a,  we have el(5) <_ IIM~II. 
Let 0 = cf(0) and let (hE : e _< 0) be increasing continuous, 5o = 0, IIM~I II > 0 

and 5o = 6. 

Choose b C_ M~I+I N n\M~,\b~ 1 of cardinali ty 0 and choose b' C_ b such tha t  

E (e, 6] ~ AM~¢n~ n b 7t b t. By the induction hypothesis,  we can find r~ 1 E 

M&+I such that  sup(c rl)  = M51 n n ,  r <_ r6o,/3 < 61 ::~ A rl nb~ = B N b z  and r l  

is (M~, Q)-generic for every/3  _< 51. Let r l  + be such tha t  r~ I <_ r+51 E Q N  M~I+I 

and sup(bh~ U b) < sup ( r~ )  and A ~+ n bh~ = B n b51 and A ~+ n b = b'. Now 

we choose, by induction on e E [2,6], a condition rE such tha t  rE E M5~+1, 

sup(c ~ )  = Mh~nn, r + < rE, [~ E [2,~) ~ re < rE] and/3 < 5E =~ A ~ N b z  = BAbE 

and r~ is (M.~, Q)-generie for 7 <- 5~. For limit ~, rE is uniquely determined and 

is E Q by the choice of r +. For ~ nonlimit  use the induction hypothesis for 

( M z : / 3  E [hE + 1, 5E+I] ). 
Case 3: Neither Case 1 nor Case 2. 

So a is strongly inaccessible, call it 0 and 0 = Mo N n; so as {n, S} E Mo -< 

(7-t()C),E,<~), necessarily 5 = sup(S) ,5  E Sbd and ~(}0ns (e.g., 0 N S is not  

s ta t ionary  in S). Choose for each/3 < 0 an ordinal 7Z E MZ+I n n \ M z \ b z  and 

l e t A ~ = { j < i : T j E A M ~ n ~ } f o r i E S n 0 .  

Now (A~ : i E S n 0) cannot  be a diamond sequence for 0, hence we can 

f i n d X  C_ 0 a n d c l u b C -  o f 0 s u c h t h a t h E  X N S ~ A ~ -  C X N 6 .  Let C =  

{i < 0 : i limit, (Vj < i ) (a j  < i) and i E C -  and Mi N n = i}, clearly C is a 

club of 0. Let  b~- = aZ U {TZ}, B+ = B U {TZ :/3 E X},  and proceed naturally. 

I3.14 

3.16 Remark: So we can i terate and get tha t  (GCH and) diamond fail for "most" 

s ta t ionary  subsets of any strongly inaccessibles. We shall re turn  to this elsewhere. 
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§4. E x i s t e n c e  o f  n o n - f r e e  W h i t e h e a d  ( a n d  E x t ( G , Z )  = {0}) a b e l i a n  

g r o u p s  in  s u c c e s s o r  o f  s i n g u l a r s  

In [Sh 587], the consistency with GCH of the following is proved for some regular 

uncountable  s: there is a n-free nonfree abelian group of cardinali ty s,  and 

all such groups are Whitehead.  We use s inaccessible, here we ask: is this 

assumption necessary for the first such s? 

The following claim seems to support  the hope for a positive answer. 

4.1 CLAIM: Assume 

(a) A is strong limit singular, a = cf(A) < A, s = A + = 2 ~, 

(b) S C_ {5 < s :  cf(~) = 0} is stationary, 

(c) S does not reflect or at least, 

(c) -  A = (A~: 5 • S), otp(A~) = 0, sup(A~) = 6, and 

is A-free, i.e., for every a* < s we can find (a~ : 5 • a* n S), a~ < 5 such 

that (A~\a~ : 6 • S n a*) is a sequence of pairwise disjoint sets, 

(d) (Gi : i <_ o) is a sequence of abelian groups such that: 

5 < a limit ~ G6 = Ui<~Gi ,  

i < j <_ a ~ G j / G i  free and Gi c_ Gj,  

Go~ Ui<o Gi is not Whitehead, 

ICol <A, 
Co = {0). 

(1) There is a strongly n-free abelian group of  cardinality s which is not 

Whitehead, in fact F(G) C_ S. 

(2) There is a strongly n-free abelian group G* of  cardinality s satisfying 

H OM(G* ,Z)  = {0}, in fact F(G*) C_ S On fact, the same abelian group can 

serve). 

(3) We can rephrase clause (d)(7) of the assumption, i.e., "Go~ Ui<o Ci is not 

Whitehead", by: 

(d ) (7 ) -  some f* c HOM(Ui<  o Gi, Z) cannot be extended to f '  C HOM(Go,  Z). 

We first note: 

4.2 CLAIM: Assume 

(a) A strong limit singular, a = cf(A) < A, s = 2 ~ = A +, 

(b) S C_ {6 < s : cf(~) = o and A ~ divides fi for simplicity} is stationary, 

(c) A~ c_ 5 = sup(A~), otp(A~) = 0, A~ = {a~,¢ : ¢ < o} increasing with ~, 

(d) h0: s --+ s and hi: s --+ a are such that 

(V~ ( s)(V¢ < ~r)(V3< • (a,  s))(3x/~ • [% "~q=A])(h0(/~) -- o~ and hx(/~) = ¢), 
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and ( W  < < 

(e) A = (A¢ : ( < a) is increasing continuous with limit A such that Ao = 0 and 

( < a ==> A¢+I = cf(A¢+l) > or. 

Then we can choose ¢ < c S> such that 

(~1(i) <7~: ¢ < A> is strictly increasing with limit 6, 

(ii) ifA¢ _< ¢ < ~ + 1  then  h0('y~ ) ~-- h 0 ( ~ , )  : o15, ¢ and  hl(') '~) = hl(')'~5 ) = ¢, 

(iii) h~ a partial function from n to n, sup(Dom(h~)) < 7~ for 5 • S; 

(~)2 for every ]: n --+ n ,B  • [n]<~ and g~ : n --+ A¢+1 for i < a there are 

stationarily many 5 • S such that: 

(i) h ; - - f  (B ,  

(ii) if A< _< ~ < A~+, then g~(7~) = g¢2(7~¢ ~ )- 

Remark: Note that when subtraction or division* is meaningful, (~)2 is quite 

strong. 

Proof: By the proofs of 1.1 and 1.2 (one can use guessing clubs by as,o's, and 

can demand that fl2~¢, ~ 82~+~ • [a~,~, a~,¢ + ~)). 
But to help the reader, we give a proof. 

Let A = ~':~i<~ Ai, Ai increasing continuous, Ai+l > 2 ~', Ao = 0, A1 > 2 °. Let 

Mi -~ (~/((2~)+), • ,  <*) be increasing continuous, [[M~l ] = A, (Mj : j < i) • 

M~+I, A + 1 c Mi and {fi~, h0, hi, A} • M0. For a < A +, let a = [.Ji<~ aa,i such 

that ]a~,i] < Ai and ha# • M~+I and even (< aft# : i  < a >: fl < a) • M~+I. 
Without loss of generality 5 • S ~ 5 divisible by A ~ (ordinal exponentiation). 

For 5 • S let ~ = (fl] : i < a} be increasing continuous with limit 5, fl] divisible 

by A and > 0. For 5 • S let (b~ : i < a) be such that  b/5 G fl],]b~[ _< Ai,b~ 

is increasing continuous in i and 5 = ~i<o b~ (e.g., b~ = Uj~,j2<i az~,~ U A~). 

We further demand A~ G b~ n A. Let (f~ : a < A +} list the two-place functions 
with domain an ordinal < A + and range C A +. Let be the set of fimctions h, 

Dom(h) ~ [n]<~, Rang(h) C_ n, so IHI = n. Let S = U{Sh : h • H},  with each 

Su stationary and (Sh : h • H} pairwise disjoint. Without loss of generality 

5 • Sh ~ sup(Dom(h)) < flo ~. Let h~ be h when 5 • Sh. We now fix h • H and 

choose ~ = (7~ : i < A) for ~ • Sh such that  clauses (~)~ + (~)~ for our fixed h 

(and 5 • Sh ignoring h in (~)2) hold; this clearly suffices. 

Now for (f • Sh and i < ~ and g • ° a  we can choose (~9,~ (for ~ < Ai+~) such 

that: 

* Namely, xz belongs to some additive group G* for fl < n, ~ E Hom(G*,H*), 
g(fl) = t)(xz), then for some 5 as in C)2, we have g(x°~ ~ - x ~ )  is OH*; similarly 

for multiplicative groups. 
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(A) (~g,E : c < ~i+1) is a strictly increasing sequence of ordinals, 

(B) /3~ < ¢~9,~ </3/~+1 (we can even demand ¢~j,~ </3/~ + A), 
( c )  = a n d  = i ,  

(D) for** every o~1,~2 E b~g(i), the sequence (Min{Ag(i) , f*l( ,2 ,~g,~)  : v < 

~i+1}) is constant,  i.e., one of the following occurs: 

(")  C < )~i+1 ::~ ("2, (~g,c) ~ O°m(f ;x ) ,  
(/3) e < Ai+l ~ Y*~ (c~2, <~,g,s) = f*,  ("2, ¢/5,j,o) well defined, 

(7) c < hi ,  f ~  ("2, ¢~g,,) _> Aj, well defined. We can add (f21 (a2, ¢/hg,e) : 
c < Ai} is constant or strictly increasing, 

(E) for some j < a,  we have (V¢ < Ai+1)[(~9,~ C an,j] where 

- = sup{4~9,~ : ¢ < )~i+1} (remember a # Ai+l are regular). 
For each function g E ° a  we try 9g,5 = (7~,g : c < A) if Ai _~ ~ < Ai+l then 
,{5,9 5 c~ = ¢i,g,~" Now for some g it works. L.2 

Proof  of 1.2(1): Let M -- U{M~ : ,  < to}, M~ -~ (7/(2~)+), C) has cardinality 

A, M~ is increasing continuous, (M z :/3 _< , )  E Ma and (Fi : i < a) belongs to 

Mo. Let Eo = (5 < ~ : M~ N t~ -- (f} and E = acc(E).  The proof is like the proof 

of 4.2 with the following changes: 

(i) /3/~ C E0 for 5 e S M E,  

(ii) in clause (A) we demand (~i~,g,~ : g E G,c  < Ai+I) belongs to M~+~ (hence 

also (C~,g,~: g E G, e </~jTi  : j _< i} belongs to M~£1), 

(iii) clause (c) is replaced by: ~,g,~ e Fi({(~,gt(j+l),~ : e < Aj+I and j < i}). 
|1.2 

Proof  of 4.1: (1) We apply 4.2 to the (As : 5 E S) from 4.1, and any ho, hl  as 
in clause (d) of 4.2. 

Let {t~J + G i  :'~ < 0 ~'j} be a free basis o f G J / G  ~ for i < j < a. I f / =  0 , j  = a 

we may omit the i , j ,  i.e., t¢ = t~ '~ and 0 = 0 °'°. Let 0 + R 0  = [Go[ < A; actually 

0 ¢'¢+1 < A¢ is enough; without  loss of generality 0 < A1 in 4.2. Let/3~,i = 7 5 ~(¢,i) 
where ~(~, i) -- [.J~<¢ ~ + 1 + i for 5 G S, ~ < ~, i < 0. 

Let/3~(.) -- Min(/3 :/3 e Dom(h~), h~(/~) ¢ 0}, if well defined where h~ is from 

4.2. 

Clearly (see Q~(iii)  of 4.2) we have /3~(*) ~ {/3~,i : ( < a, i  < O} (or omit 

A¢,/3~,i for ( too small). We define an abelian group G*: it is generated by 

{x~ : a < g} U {y~ : ~ < 0 and 5 ~ S} freely except for the relations: 
a 5 (*)~ ~-~.~<o "~Y'~ ---- ~{b¢ .~(x~ ,~  - x ~ ¢ ) :  ¢ < a and ~/< 0 ¢,¢+~ } 

when Go ~ ~ < 0 o . ~  a.~t.~ = ~-~.{b¢,~t~'¢+l : ( < a and 7 < 0¢'¢+~} where 

** We can use a colouring which uses, e.g., ({],9,~ :J  < i,¢ < Aj+I} as a parameter. 



Vol. 134, 2003 SUCCESSOR OF SINGULARS 153 

aT, b¢,7 ~ Z but  all except  finitely many are zero. 

There  is a (unique) homomorphism g5 from G~ into G* induced by gh(tT) = y75. 

As usual it is an embedding. Let Rang(g~) = G <5>. 

For/3 < n let G~ be the subgroup of G* generated by 

{x~:  c~ </3} U {y~: ? < 0 °'° and 6 •/3 n s}. 

It can be described similarly to G*. 

Fact A: G* is strongly A-free. 

Proof: For c~* < ~* < n, we can find (c~a : 6 E S N  (c~*,/3"]> such tha t  

(A5\c~a : 6 • S Cl (a*,/3"]) are palrwise disjoint and disjoint to c~* hence the 

sequence ({/3~,i : i < 0, ~ • (Min{~ < ~:/3~,0 > c~a}, a ) } :  5 • S C? (~*,/3"]} is a 

sequence of palrwise disjoint sets. 

For ~ • S n  (a*,/3*], let ~5 = Min{~ : /3~, o > c~5} < or. Now easily G} .+I  is 

generated as an extension of G ; . + l  by {gh(t~e'°):  7 < 0¢~'° and 6 • Sn(a* , /3*]}u  

{x~ : a • (a*,/3*] and for no (~ C S n (a*,/3*] do we have a • {/3~,i : i < 0 ¢'° 
and ( < ~}} ;  moreover, G5.+1 is freely generated (as an extension of a ; . + l  ). 

So G*~.+I/G*~.+~ is free; as also G~ is free, we have shown Fact  A. 

Fact B: G* is not Whitehead. 

Proof:  We choose, by induction on c~ < n, an abelian group Ha  and a homo- 

morphism ha:  Ha --4 G* = ( { x z : / 3  < c~} U {y75:7 < 0, 5 c S M ct})a* increasing 

continuous in c~, with kernel Z, h0 = zero and ks:  G~ --4 Ha  is a not necessarily 

linear mapping such tha t  ha  o ks  = i d c ; .  We identify the set of members  of 

Ha,  G~, Z with subsets of A x (1 + c~) such tha t  OH~ = Oz = O. 
Usually we have no freedom or no interesting freedom. But  we have for c~ = 

(~ + 1, (~ E S. Wha t  we demand is (G (5) - -  see before Fact A): 

(*)2 lett ing H <5> = {x E H5+1 : hh+l(x)  6 G<5>}, if s* = g,~(xze(.)) E Z\{0}  

(g~ from 4.2), then there is no homomorphism f5 : G <~> -4 H <5> such 

tha t  

(c~) f~(xz~.~) -kh(x/3~.~) • Z is the same for all i • (Ue<¢ A~, A¢] 

(/3) h5+1 o f5 = idG<~>. 

[Why is this possible? By non-Whiteheadness of G°/Ui<o Gi, tha t  is, see 

(d ) (7 ) -  in 4.1.] 

The  rest should be clear. 

Proof of 4.1(2): Of course, similar to tha t  of 4.1(1) but  with some changes. 
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Step A: Wi thout  loss of generality there is a homomorphism f*  from [Ji<o Gi to 

Z which cannot  be extended to a homormopshim from Go to Z. 

[Why? Standard,  see [Fu].] 

Step B: During the construct ion of G*, we choose G* by induction on a _< ~¢, 

but  if h~(0) from 4.2 is a member  of G~ in (*)1 we replace (x~,~ - x~¢  ) by 

(x~,~ - xZ~ ¢ + f*(t~'¢+l)h*5(O)); note tha t  f*( t~ '¢+1) E Z and h~(0) E G~. 

So if in the end f :  G* --+ Z is a non-zero homomorphism,  let x* E G* be such 

tha t  f (x*)  ¢ 0 and* If*(x*)] is minimal under this, so without  loss of generality 

it is 1. Hence for some 5 E S we have: 

(*)3 f(g~(O)) -- 1z, 

(*)4 f(x7~¢+~+l+ , )  ---- f(XT~¢ ) for 7 E ,~¢-i-1\/~, 

tha t  is, f ( xb~ , )  -- f(xT~,¢) 

(in fact, this holds for stat ionari ly many ordinals 5 E S). 

So we get an easy contradiction. 

(3) The  proof  is included in the proof  of par t  (2). 14.1 

We also note  the following consequence of a conclusion of an instance of GCH. 

4.3 CLAIM: Assume 

(a) A = #+ and # > a = cf(#),  

(b) A = A  ° w h e r e O = 2  ° 
(equivalently #o = #+ > 20), 

(c) S C {5 < A: cf(5) -- a} is stationary, 
(d) fl = (~a : a E S) with ~a an increasing sequence of  length a with limit 5. 

Then we can find (fi ~ : ~ E S) such that: 

= i < 

(fl) A~ E [5] <" and sup(A~) < 5, 

(~)+ for some (A*: i < a) increasing with limit A, ]A/~ ] < A*, 

(7) for every h: A --~ A, /'or stationarily many  5 E S we have (Yi < a) 

[h(~]~(i)) E m/5]. 

4.4 Remark: (1) We can restrict ourselves to h: A --+ # in clause (~), and then, 

of course, we can use (< A~: i < a >: 5 E S) with A/5 C_ #. 

(2) We can add to the conclusion "A~ C_ ~ ( i  + 1)" if ~ guess clubs. 

Proof'. Let (Ai : i < a)  be increasing continuous with limit #. Let  (O~ : ? < A) 

list oA, so 5~ = (az,~ : e < 0) and, without  loss of generality, (~.~ _< 7. For 

each 5 E S let (b~ : i < a)  be an increasing continuous sequence of subsets of 

* What does this mean? f*(x*) is an integer, so its absolute value is well defined. 
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with union 5 such tha t  Ib~l < p and sup(bi a) < 5; for (/3) +, moreover, Ib~l ~ ~i; 
this is possible as cf(5) = cr = cf(#) < #. Let (de : c < 0} list ° a  and define 

6 A~ '5 =:  { ~ , e  : 7 E bag,(i)}. Now d~ '6 is a set of cardinali ty <_ Ibg,(i)l < # and 

sup(A~ '~) _< sup(b~(0 ) (as we have demanded tha t  (~7,e -< 7), but  sup(b~,(0 ) < 5 

by the choice of the b~'s, hence sup(A~ '~) < 5. So for each c < 0 the sequence 

/~/ =:  (ft. e'a : 6 E S}, where 2 ~,a = {A~ '5 : i < a} satisfies clauses (a)  + (fl) and 

(fl)+ when relevant. Hence it suffices to prove tha t  for some e < 0 the sequence 

As satisfies clause (-y), too. Assume toward a contradict ion tha t  for every ¢ < 0 

the sequence A~ fails clause ('y), hence there is he: ), --+ ,k which exemplifies this, 

tha t  is, for some club Ee of A, 5 E Ee M S ~ (3i < a)[he(r/a(i)) ~ A~'a]. So for 

every/3  < A the sequence (he(/3) : ~ < 0} belongs to 0)~, hence is equal to Oh(5) 

for some h(~) < A. Clearly E = {($ < ~ : 5 a limit ordinal and (V/3 < 5)h(~) < 5} 

is a club of A (recall O < ~), hence we can find 5(*) E EMS. We define g* : a --~ 

by g*(i) = Min{j  < ~ :  h(r/a(,)(j)) E ha}, now g* is well defined as, for i < a, the 

ordinal h(~/5(,)(i)) is < 5( , )  (as 5( , )  E E)  and ~la(,)(i) < 5(*)) and 5 = [.Jj<o b~. 

As g* E °a ,  clearly for some e( , )  < 0 we have de(,) = g*. 

So, for any i < a,  let 7i = h('r/5(,)(i)); now h(r/6(,)(i)) E b a g*(0 (by the choice 

of g*) and g* (i) = ge(,)(i) by the choice of c(*), together  with 7i E b a But  g~c,)(0" 

A~ (*)'~(*) = {c~,e(,) : 7 E bga ,)(i)} by the choice of A~ (*)'a(*), hence a~,e( , )  E 

A~(*)'6(*); but  as 7i = h(r/a(,)(i)), by the choice of h we have h~(,)(~a(,)(i)) = 

c%,e(,) E A~ (*)'~(*). 

So (gi < er)(he(~/a(,)(i)) E A~ (*)'~(*)) which, by the choice of he, implies 5(*) 

Ee(,),  but  5(*) E E C ~e<a  Ee, a contradiction. |4.3 
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